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Is the Class of Cyclic Codes Asymptotically Good?

Conchita Martínez-Pérez and Wolfgang Willems, Member, IEEE

Abstract—There is the long-standing question whether the class of
cyclic codes is asymptotically good. By an old result of Lin and Weldon,
long Bose–Chaudhuri–Hocquenhem (BCH) codes are asymptotically bad.
Berman proved that cyclic codes are asymptotically bad if only finitely
many primes are involved in the lengths of the codes. We investigate
further classes of cyclic codes which also turn out to be asymptotically
bad. Based on reduction arguments we give some evidence that there are
asymptotically good sequences of binary cyclic codes in which all lengths
are prime numbers provided there is any asymptotically good sequence of
binary cyclic codes.

Index Terms—Asymptotically good codes, cyclic codes, Kronecker
product.

I. INTRODUCTION

Throughout the correspondence, all codes are assumed to be linear
and defined over a finite field of characteristic two (if not stated other-
wise explicitly). A sequence of [ni; ki; di] codes with n1 < n2 < � � �
is called asymptotically good if there exist � > 0 and � > 0 such that

ki

ni
� � and

di

ni
� �

for all i = 1; 2; . . .. A class of codes is called asymptotically good
if there is an asymptotically good sequence in which all codes be-
long to the class. By [11], Bose–Chaudhuri–Hocquenhem (BCH) codes
are asymptotically bad, i.e., in the class of BCH codes there are no
asymptotically good sequences. However as Berlekamp and Justesen
pointed out in [3] a suitable concatenation of BCH codes with max-
imum distance separable (MDS) codes leads to cyclic codes which per-
form much better than BCH codes. However using their construction
we get again only sequences which are asymptotically bad. Kasami
proved in [8] that there is a sequence of binary cyclic codes whose error
probabilities approach zero and whose transmission ratio approaches
a limit greater than zero as the lengths of codes grow to infinity pro-
vided the binary-symmetric channel (BSC) probability of error is small
enough. Justesen was the first to describe explicitely an asymptotically
good sequence of codes (see [7]). However the codes are not cyclic.
Meanwhile many other classes have been checked to be asymptotically
good, in particular the class of quasicyclic (not cyclic) codes (see [9],
[10]).

At the WCC 2003 meeting in Versailles Kabatianski brought again
to our attention the following old problem which was already asked by
Assmus, Mattson, and Turyn in 1966 (see [1]).

Is the class of cyclic codes asymptotically good?
Not much is known about that problem (see [5, p. 1035]), and any

progress seems to be of interest.
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Note that the automorphism group of a cyclic code of length n con-
tains a cycle of order n. In particular the automorphism group acts
transitively on the coordinates. Thus cyclic codes belong to the class
of transitive codes, i.e., codes which admit a transitive automorphism
group. Just recently Stichtenoth proved that the class of transitive codes
is asymptotically good (see [14]). His construction is based on a new
tower of function fields. However this does not cover the case of cyclic
codes which are particular transitive codes.

II. THE RESULTS

For n 2 , let �(n) denote the set of primes dividing n. Suppose for
a moment that j[1i=1 �(ni)j <1 for a sequence (Ci) of binary cyclic
[ni; ki; di] codes with n1 < n2 < � � � and all ni odd. Then, by a result
of Berman (see [4, Theorem 2.1]), the sequence is asymptotically bad.
Thus in order to find an asymptotically good sequence of binary cyclic
codes we have to assume that j [1i=1 �(ni)j = 1.

To state our main results we define s(n) for an odd n 2 as the
smallest positive integer such that n j 2s(n) � 1. Thus the finite field
with 2s(n) elements is the smallest extension field of 2 containing a
primitive nth root of unity.

Next we decompose the lengths

ni = ni . . .ni

where 0 < ni 2 and the ni are pairwise coprime (and odd). For
each i let

ti = lcmr 6=kfgcd(s(ni ); s(ni ))g:

With these notations, we have the following theorems.

Theorem II.1: Let (Ci) be a sequence of binary cyclic codes with
limi!1 si = 1, i.e., the number of different coprime factors in the
lengths grows to infinity for i!1. If in addition the sequence (ti) is
bounded then the sequence (Ci) is asymptotically bad.

Theorem II.2: Suppose that there exists an asymptotically good se-
quence (Ci) of binary cyclic codes with bounded sequence (ti). Then
there exists an asymptotically good sequence of cyclic codes (C0i) over
the field 2 with t = lcmiftigwhere the length of eachC 0i is a power
of a suitable prime.

Unfortunately under the assumptions of Theorem II.2, we were not
able to prove the existence of a binary asymptotically good sequence
in which all cyclic codes have prime power lengths. However under
rather mild number theoretical conditions we can reduce prime powers
to primes. More precisely, we have

Theorem II.3: LetCi be an asymptotically good sequence of cyclic
codes over a finite field F of characteristic 2. Suppose that the length
of eachCi is a prime power, say pa

i
, for a suitable odd prime pi which

satisfies

s(pai ) = p
a�1
i s(pi) (1)

for all positive integers a.
Then there exists an asymptotically good sequence (C 0i) of cyclic

codes over F in which the length of each C 0i is a prime (actually equal
to pi).
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We would like to mention here that there is some evidence that the
condition (1) in Theorem II.3 can be dropped. This can be seen as fol-
lows.

Let p be an odd prime. If s(p3) > s(p2) then by a result of
Berlekamp

s(pa) = pa�1s(p)

for all nonnegative integers a � 3 (see [2, Theorem 6.52]). Up to 212

there is no prime p with s(p3) = s(p2). Up to 4 � 1012 there are only
two primes, namely p = 1093 and p = 3511 which satisfy s(p2) =
s(p). Note that s(p2) = s(p) is equivalent to the condition 2p�1 �
1 mod p2 which means that p is a Wieferich prime (see [6]). To date,
the only known Wieferich primes are 1093 and 3511.

In order to prove the results above we need some facts on cyclic
codes. Most of them seem to be well known. However, to keep the
correspondence self-contained we will give the proofs here.

III. SOME FACTS ON CYCLIC CODES

More generally than we need in the theorems we assume in this sec-
tion that K is a finite field with jKj = pt and p any prime. As usual
when dealing with cyclic codes we furthermore assume that the lengths
of the codes are not divisible by the characteristic p of the underlying
field. Remember that a cyclic code of length n is an ideal in the factor
algebra K[x]=(xn � 1). The condition p n forces

f = xn � 1 =

s

j=1

fi

with pairwise coprime and irreducible polynomials fi 2 K[x]. Thus,
by the Chinese Reminder Theorem, we have

K[x]=(xn � 1) �= K[x]=(f1)� � � � �K[x]=(fs)

where the components K[x](fi) are finite extension fields of K . This
shows that the ambient space K[x]=(xn � 1) is a direct sum of irre-
ducible (minimal) ideals. Such an ideal is generated by a polynomial
g with g j xn � 1 where (xn � 1)=g is irreducible. In particular, we
have the following well-known fact which is part of Theorem 7 in [13,
Ch. 8, Sec. 3].

Proposition III.1: Any cyclic code of length n is a direct sum of
irreducible cyclic codes of length n.

If n = n1 . . .ns with ni relatively prime then

K[x]=(xn � 1) �= K[x1]=(x
n
1 � 1)
 � � � 
K[xs]=(x

n
s � 1) (2)

where the right-hand side denotes the Kronecker product. To see that
note that each element on the right hand side can be written as

f = ai ���i x
i
1 
 � � � 
 xis

with 0 � ij < nj and ai ...i 2 K . If we choose

t(i1; . . . ; is) � ij mod nj

for j = 1; . . . ; s then the isomorphism in (2) is given by

f 7! ai ...i x
t(i ;...;i ):

Thus the Kronecker product of cyclic codes of coprime lengths ni is
again cyclic and of length n = n1 . . .ns (see [13, Ch. 18, Sec. 2,
Theorem 1]).

In general the Kronecker product of irreducible cyclic codes of co-
prime lengths need not to be irreducible. Furthermore an irreducible
cyclic code of length n = n1n2 with n1 and n2 coprime is in general
not a Kronecker product of cyclic codes of lengths n1 and n2. To over-
come these difficulties we have to assume additional conditions.

Proposition III.2: An irreducible cyclic codeC of lengthn = n1n2
with n1 and n2 coprime is a Kronecker product of irreducible cyclic
codes Ci of length ni (i = 1; 2) if and only if dim C1 and dim C2

are coprime.
Proof: This is Theorem 2 of [13, Ch. 18, Sec. 3].

However, all irreducible cyclic codes of length n = n1 . . .ns with
ni coprime decompose as a Kronecker product of irreducible cyclic
codes of length ni over a field big enough (a splitting field for the poly-
nomial xn � 1 suffices). The use of this splitting field is the key point
in our main theorems. Unfortunately we can not drop the assumption
on the field. The objective of the next lemmata is to measure how big
the field must be.

Definition III.3 : Let p be a prime. Then for n 2 with p n
the number s(n) is defined as the smallest positive integer such that
n j ps(n) � 1.

Proposition III.4: If jKj = pt then the dimensions of the irre-
ducible cyclic codes over K of length n are

s(m)

gcd(t; s(m))

with m j n.
Proof: We have to find the degrees of irreducible (normed) poly-

nomials f 2 K[x] with f j xn � 1. Clearly, f has a zero, say � in
a suitable extension field of K . Thus �n = 1 and therefore � is of
orderm withm j n. Since f is irreducible (and normed) f is the min-
imal polynomial of � overK . This polynomial is known to have degree

s(m)
gcd(t;s(m))

.

Proposition III.5: Let n;m 2 be coprime and not divisible by
the prime p. Let jKj = pt and suppose that gcd(s(n); s(m)) j t. Then
the irreducible cyclic codes of length nm are precisely the Kronecker
products of irreducible cyclic codes of length n with irreducible cyclic
codes of length m.

Proof: Note that

K[x]=(xnm � 1) �= K[y]=(yn � 1)
K[z]=(zm � 1):

Thus, by Proposition III.2, we only have to check that the dimensions of
the irreducible cyclic codes of length n are coprime to those of length
m. By Proposition III.4

s(n0)

gcd(t; s(n0))
resp.

s(m0)

gcd(t; s(m0))

are the dimensions of irreducible cyclic codes of length n resp. m for
suitable n0 j n resp. m0 j m. Since s(n0) j s(n) and s(m0) j s(m) we
get

gcd(s(n0); s(m0)) j t:

Thus,

gcd(s(n0); s(m0)) j gcd(s(n0); t) and

gcd(s(n0); s(m0)) j gcd(s(m0); t)

which implies that

s(n0)

gcd(t; s(n0))
and

s(m0)

gcd(t; s(m0))

are coprime.
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Together with an obvious induction argument, we obtain the fol-
lowing.

Proposition III.6: Let jKj = pt and let n = n1n2 . . .ns 2
where the ni are pairwise coprime and not divisible by p. Suppose that

gcd(s(ni); s(nj)) j t

for all 1 � i 6= j � s. Then every irreducible cyclic code of length n
over K is a Kronecker product of the form

C1 
 � � � 
 Cs

where Ci is an irreducible cyclic code of length ni overK .
Proof: Let m = n1 . . .ns�1. Since the ni are pairwise coprime

we have

s(m) = lcm(s(n1); . . . ; s(ns�1))

and the hypothesis implies

gcd(s(m); s(ns)) j t:

Thus we may apply Proposition III.5 to m and ns. An obvious induc-
tion argument yields the assertion.

Finally we state twomore results on codes which are well known but
crucial in the next section when proving the main theorems.

Lemma III.7: LetC be an [n; k; d] code over a field with q elements.
If k � 2 then

(q + 1)d � qn:

Proof: This follows immediately from the Plotkin bound.

Lemma III.8: Let F=E denote an extension of finite fields and let
C be a code over E. We denote by C 
 F the F -code obtained by
extending scalars of C . Then the minimum distance of C 
F is equal
to the minimum distance of C , i.e.,

d(C 
 F ) = d(C):

Proof: The assertion is obvious since the minimal distance of
a code can be read off from linear (in)dependency conditions on the
columns of a parity check matrix which do not depend on the field.

IV. PROOFS OF THE THEOREMS

This section is devoted to the proofs of the main results stated in
Section II.

Proof of Theorem II.1: Let t = lcmiftig and letF be a field with
q = 2t elements. By Lemma III.8, wemay assume that the codesCi are
defined over F . Since ti j t for each i we have gcd(s(ni ); s(ni )) j t
for r 6= k and r; k � si. By Proposition III.1, Ci is a direct sum of
irreducible cyclic codes of length ni over F . According to III.6 the
irreducible codes are of the form

Ui = Ui 
 Ui 
 � � � 
 Ui

where Ui is an irreducible cyclic code of length ni . We are going
to distinguish two cases according to how many components Ui of
dimension 1 occur in the irreducible summands of Ci.

Assume first that there exists a  such that for all i the code Ci con-
tains only summandsUi with at least si� componentsUi of dimen-
sion 1. Next, we compute a bound for dimCi. Consider first the code,

sayM , which is the sum of all those irreducible cyclic codes of length
ni of the form

Ui = Ui 
 Ui 
 � � � 
 Ui

with dimUi = 1 for j = 1; . . . ; si � . As there are at most q � 1
irreducible cyclic codes of a fixed length over F the number q � 1
is also a bound for the number of irreducible codes of length ni and
dimension 1 over F . Thus we obtain

dimM

ni
�

(q � 1)s � s

j=s �+1 ni

ni
=

(q � 1)s �

s �

j=1 ni
:

To get a bound for dimCi, note that after a renumbering of ni if
necessary, we may assume that ni < ni < � � �. Taking into account
that we may choose the  factors at arbitrary positions and that the
product of any si �  numbers ni is greater than s �

j=1 ni we get

dim Ci

ni
�

si


(q � 1)s �

s �

j=1 ni
:

Since ni � j, we obtain

dim Ci

ni
�

si


(q � 1)s �

(si � )!
:

The obvious inequality

si


(q � 1)s � � (1 + (q � 1))s = qs

implies that

dim Ci

ni
�

qs

(si � )!
= q

qs �

(si � )!
:

Finally, the assumption limi!1 si = 1 forces limi!1
q

(s �)!
= 0

which proves that the sequence (Ci) is bad.
Thus, we may assume that in each Ci of a suitable subsequence we

can find a summand Ui 
 Ui 
 � � � 
 Un such that the number ri
of components Ui of dimension strictly bigger than 1 gets larger and
larger if i grows. Applying Proposition III.7, we obtain

d(Ci)

ni
�

s

j=1

d(Ui )

ni
� (

q

q + 1
)r :

As limi!1 ri = 1 the sequence (Ci) is again bad and the proof is
complete since a subsequence of a good sequence is always good.

Proof of Theorem II.2: By assumption and Theorem II.1, the se-
quence si is bounded. So by choosing if necessary a subsequence of
(Ci) we may assume that si = s for a suitable positive integer s and
all i. Extending scalars in Ci we get a good sequence of cyclic codes
over 2 where t = lcmiftig. We denote that sequence again by (Ci).

Now we proceed by induction on s. We only have to consider the
case s > 1. Thus, we may split

ni = kili

with 1 < ki and 1 < li coprime and both ki and li a product of a
fixed number of primes for each i. Note that according to the condition
limi!1 ni = 1 we may assume that limi!1 ki = 1. Since

gcd(s(ki); s(li)) j t

every irreducible cyclic code of length ni over 2 is a Kronecker
product of irreducible cyclic codes of lengths ki and li by Proposi-
tion III.5. Thus, we may write

Ci = (Ai
1 
 V i

1 )� (Ai
2 
 V i

2 )� � � � � (Ai
m 
 V i

m )
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where theAi
j are suitable cyclic codes of length ki and fV

i
1 ; . . . ; V

i
m g

is a full set of irreducible cyclic codes of length li. Next, we claim that
the sequence

A1
1; . . . ; A

1
m ; . . . ; Ai

1; . . . ; A
i
m ; . . . (3)

of cyclic codes has a good subsequence. Since

d(Ci)

ni
�

d(Ai
j)

ki

d(V i
j )

li
�

d(Ai
j)

ki

for all j and since the sequence (Ci) is good we only have to worry
about the dimensions of Ai

j . Assume first that for each � > 0 there
exists an i0 such that

dimAi
j

ki
< �

for all i � i0 and all j. Since fV i
1 ; . . . ; V

i
m g is a full set of irreducible

cyclic codes of length li we obviously have
j
dimV i

j = li. Thus

dim Ci

ni
=

m

j=1

dim Ai
j

ki

dim V i
j

li
<

j

dim V i
j

li
� = �

which contradicts the fact that Ci is a good sequence. Therefore, for
some � > 0, there are infinitely many codes in the sequence (3) with

� �
dim Ai

j

ki

which proves the claim.
Finally, note that either the lengths of these codes are prime powers

or their corresponding sequence of ti’s satisfies lcmiftig = t0 j t and
we may apply the inductive hypothesis to get a good sequence of cyclic
codes over 2 , hence over 2 , in which all lengths are prime powers.

Definition IV.1: A cyclic code C of length n over the field F is
called degenerate if it consists of several repetitions of a code C 0 of
smaller length, say length r, with r j n. In other words, each c 2 C
is of the form c = (c0; c0; . . . ; c0) where c0 2 C 0 or each codeword is
fixed under a cyclic shift of r coordinates.

Lemma IV.2: Let C be a cyclic code of length n with check poly-
nomial h(x). Then the following conditions are equivalent.

a) C is degenerate.
b) h(x) j xr � 1 for some r j n; r < n.
Proof: Note that C is degenerate if and only if there exists an

r j n such that each codeword c is of the form c = (c0; c0; . . . ; c0)
where c0 is of length r < n. This is equivalent to

xrg(x) � g(x) mod xn � 1

for the generator polynomial g(x) of C . Thus, a cyclic code is degen-
erate if and only if

h(x)g(x) = xn � 1 j (xr � 1)g(x)

hence, if and only if

h(x) j xr � 1:

Lemma IV.3: Let p be an odd prime and let t; a 2 . Suppose that
p t. Furthermore let F be a finite field with jF j = 2t. If s(pa) =
pa�1s(p) then for every primitive path root of unity � its minimal
polynomial over F is a polynomial in xp .

Proof: Let K be a field with F � K and jKj = 2m where
m = lcm(s(pa); t). Note that K is the smallest splitting field of the
polynomial xp �1 which contains the field F . Let � 2 K be a primi-
tive pa-th root of unity and letm�(x) 2 F [x] denote its minimal poly-

nomial over F . If we put s = gcd(s(p); t) then the condition p t
implies s = gcd(s(pa); t). Let q = pa�1. Thus, by [12, Sec. II]

deg m�(x) =
s(pa)

gcd(s(pa); t)
=

pa�1s(p)

s
=

qs(p)

s
:

Clearly

xp � 1 = (x� 1)
i

fi(x)

with irreducible normed polynomials fi(x) 2 F [x]. Furthermore

deg fi(x) =
s(p)

gcd(s(p); t)
=

s(p)

s
:

If we replace x by xq we obtain

xp � 1 = (xq � 1)
i

fi(x
q):

Note that fi(xq) is of degree
qs(p)
s

. Thus we get m�(x) = fi(x
q) for

some i.

Lemma IV.4 : Let p be an odd prime and let t; a 2 with p t.
Furthermore letF be a finite field with jF j = 2t. Suppose that s(pa) =
pa�1s(p). If C is a cyclic nondegenerate irreducible code over F of
length pa then the generator polynomial ofC is a polynomial in xp .

Proof: Let g(x) denote the generator polynomial and h = h(x)
the check polynomial of C . Put q = pa�1. Since C is nondegenerate
h xq�1, by Lemma IV.2. Furthermore, h is irreducible as a polyno-
mial over F since C is irreducible. Thus, h is the minimal polynomial
over F of a primitive path root of unity. According to Lemma IV.3 the
polynomial h is a polynomial in xq , i.e., h(x) = ~h(xq). Finally, g(x)
is a polynomial in xq since ~h(xq)g(x) = (xq)p � 1.

Lemma IV.5: Let C be a cyclic code over F of length n. Suppose
that the generator polynomial of C is a polynomial in xr where r j n.
Then there exists a cyclic code, say ~C , of length n

r
such that

i) d( ~C) = d(C)
ii) dim ~C = dim C

r
.

One says that C is r-induced from ~C.
Proof: Let g(xr) denote the generator polynomial of C . If we

put

~C = g(xr)F [xr]=(xn � 1) �= g(y)F [y](y � 1)

then

C = g(xr)F [x]=(xn � 1) = ~C � ~Cx� � � � � ~Cxr�1:

The assertions on d( ~C) and dim ~C are obvious.

Proof of Theorem II.3: By Berman [4], we know that infinitely
many primes are involved in the lengths of theCi defined overF = 2

since the sequence (Ci) is assumed to be asymptotically good. Taking
a subsequence of the sequence (Ci), if necessary, we may assume that
pi t for all primes pi which occur in the lengths.

1) We claim that we may further assume that each Ci is a sum of
nondegenerate irreducible cyclic codes of length ni.

In order to prove that we write Ci = Wi �W 0

i where Wi resp. W 0

i

denotes the sum of all irreducible nondegenerate resp. irreducible de-
generate direct summands of Ci. Since a degenerate irreducible cyclic
code of length pai corresponds to a uniquely determined irreducible
cyclic code of the same dimension but of length pa �1

i we deduce that
pa �1
i is a bound for dimW 0

i . Hence,

dim W 0

i

pai
�

1

pi
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which converges to 0 for i ! 1. Thus, we obtain

dim Wi

p
a

i

� � > 0

for all i. Furthermore d(Wi) � d(Ci) which proves the claim.
2) Now let each Ci be a direct sum of irreducible nondegenerate

cyclic codes of length pa where ai � 2. According to Lemma IV.4 the
generator polynomial of Ci is a polynomial in xq where qi = pa �1.
Thus, by Lemma IV.5, there exists a cyclic code ~Ci of length pi with
d( ~Ci) = d(Ci) and dim ~Ci =

dim C

q
. Since

dim ~Ci

pi
=

dim C

piqi
=

dim C

p
a
i

the sequence ( ~Ci) of cyclic codes of length pi is good.

Remark IV.6: Throughout the correspondence we actually never
used explicitly the fact that the underlying field is of characteristic
two. So all the results remain true in odd characteristic p provided that
the lengths of the considered codes are prime to p.
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Abstract—In this correspondence, unequal error-correcting capabilities
of convolutional codes are studied. For errors in the information symbols
and code symbols, the free input- and output-distances, respectively, serve
as “unequal” counterparts to the free distance. When communication takes
place close to or above the channel capacity the error bursts tend to be long
and the free distance is not any longer useful as the measure of the error cor-
recting capability. Thus, the active burst distance for a given output and the
active burst distance for a given input are introduced as “unequal” coun-
terparts to the active burst distance and improved estimates of the unequal
error-correcting capabilities of convolutional codes are obtained and illus-
trated by examples. Finally, it is shown how to obtain unequal error pro-
tection for both information and code symbols using woven convolutional
codes.

Index Terms—Active burst input-distance, active burst output-distance,
free input-distance, free output-distance, unequal error protection, woven
convolutional codes.

I. INTRODUCTION

Many modern communication systems require different levels of
protections against errors. Often some parts of the messages need to
be transmitted more reliably than others; we require unequal error pro-
tection for the information symbols. For example, in network commu-
nication the packet header normally needs better protection, in pulse-
code modulation (PCM) the most significant bits are more susceptible
to errors, and in multi-user communication there are often different
levels for quality of the service. Recently, multichannel communication
schemes have appeared on the market. Their subchannels may have dif-
ferent quality; that is, the parts of the code sequence corresponding to
bad subchannels should be better protected than those corresponding
to good subchannels; we require unequal error protection for the code
symbols. Commonly, unequal error protection is obtained by using sep-
arate coding schemes, one for each level of protection. In this paper we
investigate unequal error protection based on the code and encoding
matrix properties of a given convolutional code.

Unequal error protection for information symbols dates back toMas-
nick and Wolf [1], who investigated linear block codes with unequal
error protection. Since then, many papers have appeared with investi-
gations of linear codes with unequal error protection with respect to
certain positions in the codewords or certain positions in the informa-
tion sequences [2]–[5].
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