UMASS AMHERST MATH 461 F. HAJIR

SAMPLE FINAL EXAM / EXTRA CREDIT HW

1. \bowtie DEFINITIONS

a. State the names of the postulates of Neutral Geometry.
b. Define polygon, convex-polygon, and what it means for two polygons to be similar.
c. State the law of cosines.
d. Define the circumcenter of a triangle.
e. Define what we mean by an area function and state the Euclidean Area Postulate.
f. Define what it means for a line to be tangent (secant) to a circle.
g. State the Two Transversals Theorem, the Parallel Projection Theorem, and the Angle Bisector Proportions Theorem.
2. \bowtie TRUE/FALSE
a. For a fixed $n \geq 3$, any two regular n-gons are congruent to each other.
b. If $\triangle A B C$ and $\triangle D E F$ satisfy $A B / A C=D E / D F$, then they are similar.
c. If \mathcal{C} is a circle with center at O and P is exterior to \mathcal{C}, then among all points on \mathcal{C}, exactly one of them is closest to P.
d. If \mathcal{C} is a circle with center at O and P is exterior to \mathcal{C}, then there are exactly two points Q, Q^{\prime} on \mathcal{C} such that the lines $\overleftrightarrow{P Q}$ and $\overleftrightarrow{P Q^{\prime}}$ are tangent to \mathcal{C}

3. \bowtie SHORT ANSWER

a. Compute the area of a triangle which has side lengths $7,8,9$. (That's why 6 was afraid of 7 , of course).
b. For the triangle above, if θ is the measure of the smallest angle, compute $\cos \theta$.
c. Let \mathcal{C} be the unit circle, i.e. the center is at $(0,0)$ and the radius is 1 . Let P be the point (5/3, 0). Find a point Q on the unit circle such that the line passing through P and Q is tangent to \mathcal{C}.
4. \bowtie Proofs (all in Euclidean Geometry)
a. Consider the line segment $\overline{A M}$ in $\triangle A B C$, where M is the midpoint of $\overline{B C}$. Prove that $A M<(A B+A C) / 2$. For a hint, look at this footnote. For lack of a hint, don't peek. ${ }^{1}$
b. Suppose x, y, w, z are four positive real numbers such that $x^{2}+y^{2}=w^{2}+z^{2}$. Is it true that a quadrilateral $A B C D$ with side lengths $A B=x, B C=y, C D=w, D A=z$ must be cyclic? If true, prove it, if false, provide a counterexample.
c. For a triangle $\triangle A B C$, draw lines passing through each vertex parallel to the opposite side. Any pair of these lines meets a point; for the three pairs of lines, call the intersection points D, E and F. Show that A, B, C are the midpoints of the triangle $\triangle D E F$.

[^0]
[^0]: ${ }^{1}$ Hint: when you draw the line from A to M, why not keep going for a while?

