UMASS AMHERST MATH 461 F. HAJIR

SAMPLE FINAL EXAM / EXTRA CREDIT HW

1. ⋈ DEFINITIONS

- a. State the names of the postulates of Neutral Geometry.
- b. Define polygon, convex-polygon, and what it means for two polygons to be similar.
- c. State the law of cosines.
- d. Define the circumcenter of a triangle.
- e. Define what we mean by an area function and state the Euclidean Area Postulate.
- f. Define what it means for a line to be tangent (secant) to a circle.
- g. State the Two Transversals Theorem, the Parallel Projection Theorem, and the Angle Bisector Proportions Theorem.
 - 2. ⋈ TRUE/FALSE
 - a. For a fixed $n \ge 3$, any two regular n-gons are congruent to each other.
 - b. If $\triangle ABC$ and $\triangle DEF$ satisfy AB/AC = DE/DF, then they are similar.
- c. If C is a circle with center at O and P is exterior to C, then among all points on C, exactly one of them is closest to P.
- d. If \mathcal{C} is a circle with center at O and P is exterior to \mathcal{C} , then there are exactly two points Q, Q' on \mathcal{C} such that the lines \overrightarrow{PQ} and $\overrightarrow{PQ'}$ are tangent to \mathcal{C} .
 - $3. \bowtie SHORT ANSWER$
- a. Compute the area of a triangle which has side lengths 7, 8, 9. (That's why 6 was afraid of 7, of course).
 - b. For the triangle above, if θ is the measure of the smallest angle, compute $\cos \theta$.

- c. Let \mathcal{C} be the unit circle, i.e. the center is at (0,0) and the radius is 1. Let P be the point (5/3,0). Find a point Q on the unit circle such that the line passing through P and Q is tangent to \mathcal{C} .
 - 4. ⋈ Proofs (all in Euclidean Geometry)
- a. Consider the line segment \overline{AM} in $\triangle ABC$, where M is the midpoint of \overline{BC} . Prove that AM < (AB + AC)/2. For a hint, look at this footnote. For lack of a hint, don't peek. ¹
- b. Suppose x, y, w, z are four positive real numbers such that $x^2 + y^2 = w^2 + z^2$. Is it true that a quadrilateral ABCD with side lengths AB = x, BC = y, CD = w, DA = z must be cyclic? If true, prove it, if false, provide a counterexample.
- c. For a triangle $\triangle ABC$, draw lines passing through each vertex parallel to the opposite side. Any pair of these lines meets a point; for the three pairs of lines, call the intersection points D, E and F. Show that A, B, C are the midpoints of the triangle $\triangle DEF$.

¹Hint: when you draw the line from A to M, why not keep going for a while?