UMASS AMHERST MATH 300: HW 7

FARSHID HAJIR

Countable and uncoutable sets

- 1. (a) For sets X, Y, we write $X \sim Y$ if there exists a bijection from X to Y. Recall that for each $n \in \mathbb{N}$, $\mathbb{P}_n = \{1, 2, ..., n\}$; $\mathbb{P}_0 = \{\}$ is the empty set. Recall also that a set X is called finite if there exists $n \in \mathbb{N}$ such that $X \sim \mathbb{P}_n$, in which case we say that X has cardinality n (or order n). Suppose X and Y are two finite sets of cardinality n. Show that $X \sim Y$, i.e. show that there is a bijection from X to Y.
- (b) Suppose X and Y are two infinite countable (also called "countably infinite") sets. Prove that $X \sim Y$.
 - 2. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.
 - 3. Show that if X is a countable set, and $Y \subseteq X$, then Y is countable.
- 4. Give a bijection from $(0,1) = \{x \in \mathbb{R} | 0 < x < 1\}$ to \mathbb{R} , thereby showing that $|(0,1)| = |\mathbb{R}|$. Hint: think about a function that has an asymptote going to $-\infty$ near 0 and one going to $+\infty$ near 1.
- 5. (a) Show that if X and Y are countable sets, then $X \cup Y$ is a countable set. (Hint: if X and Y are both countably infinite, say $X = \{x_1, x_2, \ldots\}$ and $Y = \{y_1, y_2, \ldots\}$, then interleave the two sequences (the way the odds and evens are interleaved)).
- (b) Let $I = \mathbb{R} \setminus \mathbb{Q}$ be the set of irrational numbers. Prove that I is uncountable. (Hint: Proof by contradiction is your friend).
- 6. Suppose X is a non-empty set and $f: X \to \mathcal{P}(X)$ is defined $f(x) = X \setminus x$. Consider the subset $Y_f = \{x \in X | x \notin f(x)\}$ of X (which plays a prominent role in Cantor's theorem). Determine Y_f for the particular f we have just defined.
 - 7. (a) Convert the rational number 147.05 (written in base ten) to base 4.
 - (b) Convert the base 3 rational number $(120.21)_3 = (120.2121212121\cdots)_3$ to base ten.

2

Complex Numbers

- 9. (There are no zero-divisors in \mathbb{C}). Show that if $z, w \in \mathbb{C}$, and zw = 0 then either z = 0 or w = 0. (you may use the fact that this is true for $z, w \in \mathbb{R}$).
- 10. (a) (Every non-zero complex number is invertible). Show that for each $z \in \mathbb{C}$ such that $z \neq 0$, there exists a unique $w \in \mathbb{C}$ such that wz = 1, so it's okay to write $w = z^{-1} = 1/z$.
 - (b) Use (a) to give another proof of the statement in Problem 9.
 - (c) For z = 3 + 4i, determine 1/z and write it in the form a + bi with real numbers a, b.
 - 11. (a) Show that for $z \in \mathbb{C}$, z = 0 if and only if |z| = 0.
 - (b) Prove that |zw| = |z||w|.
 - (c) Prove using induction that for all $n \in \mathbb{Z}$, $|z^n| = |z|^n$.
 - 12. (a) Show that for $z, w \in \mathbb{C}$, |z w| is the usual distance from z to w.
- (b) (Triangle Inequality) Give an algebraic proof of the fact that for $z,w\in\mathbb{C},\ |z-w|\le |z|+|w|$ and interpret this fact geometrically. Hint: First prove that if $u\in\mathbb{C}$, then $\Re(u)\le |u|$. Next, argue that it suffices to show that $|z-w|^2\le (|z|+|w|)^2$. Now justify each step in the following:

$$|z - w|^2 = (z - w)(\overline{z} - \overline{w}) = |z|^2 + |w|^2 + 2\Re(-z\overline{w}) \le |z|^2 + |w|^2 + 2|z\overline{w}| = (|z| + |w|)^2.$$

- (c) Shade in the region $\{z \in \mathbb{C} \mid 1 \leq |z-i| \leq 2\}$. It is called an "annulus." Hint: |z-i| is the distance from z to i.
 - 13. (a) Find four solutions in \mathbb{C} of the equation $z^4 = 1$.
- (b) Using your vast knowledge of trigonometry, evaluate $\zeta = \cos(\theta) + i\sin(\theta)$ where $\theta = 2\pi/6$.
- (c) Verify that $1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5$ are six distinct solutions of $z^6 = 1$. They are called the sixth roots of unity in \mathbb{C} .
- (d) Draw a fairly accurate picture of the unit circle showing that the roots of $z^4 = 1$ and $z^6 = 1$ all lie on it. (Label the solutions). Use red for the 4 solutions of one equation and Blue for the six solutions of the other.
- 14. (Autour le théorème de De Moivre) For $z = r(\cos(\theta) + i\sin(\theta)) \in \mathbb{C}$, prove using induction on n that for all $n \in \mathbb{Z}$, $z^n = r^n(\cos(n\theta) + i\sin(n\theta))$.

Extra Credit Problems.

1. Prove that the points z_1, z_2, z_3 in the complex plane are vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3.$$

2. Let $\zeta = e^{2\pi i/5}$ so that $1, \zeta, \zeta^2, \zeta^3, \zeta^4$ are the vertices of a regular pentagon. The diagonals of this pentagon meet at the vertices of a smaller regular pentagon. Determine them.

- 3. (a) Show that for $A \neq 0$, the set of all points (x, y) in \mathbb{R}^2 satisfying $Ax^2 + Ay^2 + Bx + Cy + D = 0$ is either empty or a circle. Determine the center and the radius. What happens when A = 0?
- (b) Suppose $z_1, z_2 \in \mathbb{C}$ are distinct fixed points in \mathbb{C} and K is a fixed positive real number, $K \neq 1$. Show that the set of all $z \in \mathbb{C}$ satisfying

$$\frac{|z-z_1|}{|z-z_2|} = K$$

is a circle. Where is its center? What is its radius? How are z_1, z_2 positioned vis à vis this circle? If we keep K fixed and move z_1 along a straight line toward z_2 , what happens to the center and radius of the circle? What happens when we move z_1 along the same straight line away from z_2 ? If we keep z_1, z_2 fixed and move K toward 0 or toward ∞ , what happens to the circle? What happens when K = 1?

4. (a) Let S be a set of size $n \ge 1$ and suppose r is an integer in the range $0 \le r \le n$. Let $\mathbb{P}_r(S) = \{T \subseteq S \mid |T| = r\}$

be the set of all subsets of S of cardinality r. Use the multiplication counting principle to deduce that

$$|\mathbb{P}_r(S)| = \frac{n!}{r!(n-r)!}.$$

This number is often denoted by $\binom{n}{r}$.

(b) With the above notations for n and r and for variables x and y, derive the binomial formula

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}.$$

- 5. (a) Use the well-ordering principle to prove the Principle of Double Induction: Suppose for each pair $(a,b) \in \mathbb{N} \times \mathbb{N}$, we have a statement P(a,b). Suppose i) P(1,1) is true, and ii) Whenever P(k,l) true for some $(k,l) \in \mathbb{N} \times \mathbb{N}$, then P(k+1,l) and P(k,l+1) are also true. Then P(a,b) is true for all $(a,b) \in \mathbb{N}$.
- (b) Now prove a slight modification: Suppose for all integers $n, r \geq 1$ with $r \leq n$, we have a statement P(n,r). Suppose i) P(1,1) is true and ii) Whenever P(k,l) is true for some $(k,l) \in \mathbb{N} \times \mathbb{N}$ with $l \leq k$, then P(k+1,l) and P(k+1,l+1) are true. Then P(a,b) is true for all $(n,r) \in \mathbb{N}$ with $r \leq n$.
- 6. For a positive integer n, we let $I_n = \{k \in \mathbb{Z} \mid 1 \le k \le n\}$ be the set of integers from 1 to n. If T is a subset of I_n , let m_T be the least element of T. For $1 \le r \le n$, let f(n,r) be the average, over all subsets T of I_n of cardinality r, of m_T . Recalling from problem 4 above that there are $\binom{n}{r}$ subsets of cardinality r in I_n , we have, therefore,

$$f(n,r) := \frac{1}{\binom{n}{r}} \sum_{T \subseteq I_n, |T| = r} m_T.$$

Prove that

$$f(n,r) = \frac{n+1}{r+1}.$$