
UMASS AMHERST MATH 300: HW 7

FARSHID HAJIR

Countable and uncoutable sets

1. (a) For sets X, Y , we write X ∼ Y if there exists a bijection from X to Y . Recall
that for each n ∈ N, Pn = {1, 2, . . . , n}; P0 = {} is the empty set. Recall also that a set
X is called finite if there exists n ∈ N such that X ∼ Pn, in which case we say that X has
cardinality n (or order n). Suppose X and Y are two finite sets of cardinality n. Show that
X ∼ Y , i.e. show that there is a bijection from X to Y .

(b) Suppose X and Y are two infinite countable (also called “countably infinite”) sets.
Prove that X ∼ Y .

2. Prove that N× N is countable.

3. Show that if X is a countable set, and Y ⊆ X, then Y is countable.

4. Give a bijection from (0, 1) = {x ∈ R|0 < x < 1} to R, thereby showing that
|(0, 1)| = |R|. Hint: think about a function that has an asymptote going to −∞ near 0 and
one going to +∞ near 1.

5. (a) Show that if X and Y are countable sets, then X ∪ Y is a countable set. (Hint:
if X and Y are both countably infinite, say X = {x1, x2, . . .} and Y = {y1, y2, . . .}, then
interleave the two sequences (the way the odds and evens are interleaved)).

(b) Let I = R \ Q be the set of irrational numbers. Prove that I is uncountable. (Hint:
Proof by contradiction is your friend).

6. Suppose X is a non-empty set and f : X → P(X) is defined f(x) = X \ x. Consider
the subset Yf = {x ∈ X|x 6∈ f(x)} of X (which plays a prominent role in Cantor’s theorem).
Determine Yf for the particular f we have just defined.

7. (a) Convert the rational number 147.05 (written in base ten) to base 4.
(b) Convert the base 3 rational number (120.21)3 = (120.21212121 · · · )3 to base ten.
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Complex Numbers

9. (There are no zero-divisors in C). Show that if z, w ∈ C, and zw = 0 then either z = 0
or w = 0. (you may use the fact that this is true for z, w ∈ R).

10. (a) (Every non-zero complex number is invertible). Show that for each z ∈ C such that
z 6= 0, there exists a unique w ∈ C such that wz = 1, so it’s okay to write w = z−1 = 1/z.

(b) Use (a) to give another proof of the statement in Problem 9.
(c) For z = 3 + 4i, determine 1/z and write it in the form a + bi with real numbers a, b.

11. (a) Show that for z ∈ C, z = 0 if and only if |z| = 0.
(b) Prove that |zw| = |z||w|.
(c) Prove using induction that for all n ∈ Z, |zn| = |z|n.

12. (a) Show that for z, w ∈ C, |z − w| is the usual distance from z to w.
(b) (Triangle Inequality) Give an algebraic proof of the fact that for z, w ∈ C, |z − w| ≤

|z|+|w| and interpret this fact geometrically. Hint: First prove that if u ∈ C, then <(u) ≤ |u|.
Next, argue that it suffices to show that |z−w|2 ≤ (|z|+ |w|)2. Now justify each step in the
following:

|z − w|2 = (z − w)(z − w) = |z|2 + |w|2 + 2<(−zw) ≤ |z|2 + |w|2 + 2|zw| = (|z|+ |w|)2.

(c) Shade in the region {z ∈ C | 1 ≤ |z − i| ≤ 2}. It is called an “annulus.” Hint: |z − i|
is the distance from z to i.

13. (a) Find four solutions in C of the equation z4 = 1.
(b) Using your vast knowledge of trigonometry, evaluate ζ = cos(θ) + i sin(θ) where θ =

2π/6.
(c) Verify that 1, ζ, ζ2, ζ3, ζ4, ζ5 are six distinct solutions of z6 = 1. They are called the

sixth roots of unity in C.
(d) Draw a fairly accurate picture of the unit circle showing that the roots of z4 = 1 and

z6 = 1 all lie on it. (Label the solutions). Use red for the 4 solutions of one equation and
Blue for the six solutions of the other.

14. (Autour le théorème de De Moivre) For z = r(cos(θ) + i sin(θ)) ∈ C, prove using
induction on n that for all n ∈ Z, zn = rn(cos(nθ) + i sin(nθ)).

Extra Credit Problems.

1. Prove that the points z1, z2, z3 in the complex plane are vertices of an equilateral triangle
if and only if

z2
1 + z2

2 + z2
3 = z1z2 + z1z3 + z2z3.

2. Let ζ = e2πi/5 so that 1, ζ, ζ2, ζ3, ζ4 are the vertices of a regular pentagon. The diagonals
of this pentagon meet at the vertices of a smaller regular pentagon. Determine them.
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3. (a) Show that for A 6= 0, the set of all points (x, y) in R2 satisfying Ax2 + Ay2 + Bx +
Cy +D = 0 is either empty or a circle. Determine the center and the radius. What happens
when A = 0?

(b) Suppose z1, z2 ∈ C are distinct fixed points in C and K is a fixed positive real number,
K 6= 1. Show that the set of all z ∈ C satisfying

|z − z1|
|z − z2|

= K

is a circle. Where is its center? What is its radius? How are z1, z2 positioned vis à vis this
circle? If we keep K fixed and move z1 along a straight line toward z2, what happens to the
center and radius of the circle? What happens when we move z1 along the same straight line
away from z2? If we keep z1, z2 fixed and move K toward 0 or toward ∞, what happens to
the circle? What happens when K = 1?

4. (a) Let S be a set of size n ≥ 1 and suppose r is an integer in the range 0 ≤ r ≤ n. Let

Pr(S) = {T ⊆ S | |T | = r}
be the set of all subsets of S of cardinality r. Use the multiplication counting principle to
deduce that

|Pr(S)| = n!

r!(n− r)!
.

This number is often denoted by
(

n
r

)
.

(b) With the above notations for n and r and for variables x and y, derive the binomial
formula

(x + y)n =
n∑

r=0

(
n

r

)
xryn−r.

5. (a) Use the well-ordering principle to prove the Principle of Double Induction: Suppose
for each pair (a, b) ∈ N×N, we have a statement P (a, b). Suppose i) P (1, 1) is true, and ii)
Whenever P (k, l) true for some (k, l) ∈ N×N, then P (k + 1, l) and P (k, l + 1) are also true.
Then P (a, b) is true for all (a, b) ∈ N.

(b) Now prove a slight modification: Suppose for all integers n, r ≥ 1 with r ≤ n, we have
a statement P (n, r). Suppose i) P (1, 1) is true and ii) Whenever P (k, l) is true for some
(k, l) ∈ N×N with l ≤ k, then P (k + 1, l) and P (k + 1, l + 1) are true. Then P (a, b) is true
for all (n, r) ∈ N with r ≤ n.

6. For a positive integer n, we let In = {k ∈ Z | 1 ≤ k ≤ n} be the set of integers from 1
to n. If T is a subset of In, let mT be the least element of T . For 1 ≤ r ≤ n, let f(n, r) be
the average, over all subsets T of In of cardinality r, of mT . Recalling from problem 4 above
that there are

(
n
r

)
subsets of cardinality r in In, we have, therefore,

f(n, r) :=
1(
n
r

) ∑
T⊆In,|T |=r

mT .

Prove that

f(n, r) =
n + 1

r + 1
.


