UMASS AMHERST MATH 300: HW 7

FARSHID HAJIR

Countable and uncoutable sets

1. (a) For sets X, Y, we write $X \sim Y$ if there exists a bijection from X to Y. Recall that for each $n \in \mathbb{N}, \mathbb{P}_{n}=\{1,2, \ldots, n\} ; \mathbb{P}_{0}=\{ \}$ is the empty set. Recall also that a set X is called finite if there exists $n \in \mathbb{N}$ such that $X \sim \mathbb{P}_{n}$, in which case we say that X has cardinality n (or order n). Suppose X and Y are two finite sets of cardinality n. Show that $X \sim Y$, i.e. show that there is a bijection from X to Y.
(b) Suppose X and Y are two infinite countable (also called "countably infinite") sets. Prove that $X \sim Y$.
2. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.
3. Show that if X is a countable set, and $Y \subseteq X$, then Y is countable.
4. Give a bijection from $(0,1)=\{x \in \mathbb{R} \mid 0<x<1\}$ to \mathbb{R}, thereby showing that $|(0,1)|=|\mathbb{R}|$. Hint: think about a function that has an asymptote going to $-\infty$ near 0 and one going to $+\infty$ near 1 .
5. (a) Show that if X and Y are countable sets, then $X \cup Y$ is a countable set. (Hint: if X and Y are both countably infinite, say $X=\left\{x_{1}, x_{2}, \ldots\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots\right\}$, then interleave the two sequences (the way the odds and evens are interleaved)).
(b) Let $I=\mathbb{R} \backslash \mathbb{Q}$ be the set of irrational numbers. Prove that I is uncountable. (Hint: Proof by contradiction is your friend).
6. Suppose X is a non-empty set and $f: X \rightarrow \mathcal{P}(X)$ is defined $f(x)=X \backslash x$. Consider the subset $Y_{f}=\{x \in X \mid x \notin f(x)\}$ of X (which plays a prominent role in Cantor's theorem). Determine Y_{f} for the particular f we have just defined.
7. (a) Convert the rational number 147.05 (written in base ten) to base 4.
(b) Convert the base 3 rational number $(120 . \overline{21})_{3}=(120.21212121 \cdots)_{3}$ to base ten.

Complex Numbers

9. (There are no zero-divisors in \mathbb{C}). Show that if $z, w \in \mathbb{C}$, and $z w=0$ then either $z=0$ or $w=0$. (you may use the fact that this is true for $z, w \in \mathbb{R}$).
10. (a) (Every non-zero complex number is invertible). Show that for each $z \in \mathbb{C}$ such that $z \neq 0$, there exists a unique $w \in \mathbb{C}$ such that $w z=1$, so it's okay to write $w=z^{-1}=1 / z$.
(b) Use (a) to give another proof of the statement in Problem 9.
(c) For $z=3+4 i$, determine $1 / z$ and write it in the form $a+b i$ with real numbers a, b.
11. (a) Show that for $z \in \mathbb{C}, z=0$ if and only if $|z|=0$.
(b) Prove that $|z w|=|z||w|$.
(c) Prove using induction that for all $n \in \mathbb{Z},\left|z^{n}\right|=|z|^{n}$.
12. (a) Show that for $z, w \in \mathbb{C},|z-w|$ is the usual distance from z to w.
(b) (Triangle Inequality) Give an algebraic proof of the fact that for $z, w \in \mathbb{C},|z-w| \leq$ $|z|+|w|$ and interpret this fact geometrically. Hint: First prove that if $u \in \mathbb{C}$, then $\Re(u) \leq|u|$. Next, argue that it suffices to show that $|z-w|^{2} \leq(|z|+|w|)^{2}$. Now justify each step in the following:

$$
|z-w|^{2}=(z-w)(\bar{z}-\bar{w})=|z|^{2}+|w|^{2}+2 \Re(-z \bar{w}) \leq|z|^{2}+|w|^{2}+2|z \bar{w}|=(|z|+|w|)^{2} .
$$

(c) Shade in the region $\{z \in \mathbb{C}|1 \leq|z-i| \leq 2\}$. It is called an "annulus." Hint: $|z-i|$ is the distance from z to i.
13. (a) Find four solutions in \mathbb{C} of the equation $z^{4}=1$.
(b) Using your vast knowledge of trigonometry, evaluate $\zeta=\cos (\theta)+i \sin (\theta)$ where $\theta=$ $2 \pi / 6$.
(c) Verify that $1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}$ are six distinct solutions of $z^{6}=1$. They are called the sixth roots of unity in \mathbb{C}.
(d) Draw a fairly accurate picture of the unit circle showing that the roots of $z^{4}=1$ and $z^{6}=1$ all lie on it. (Label the solutions). Use red for the 4 solutions of one equation and Blue for the six solutions of the other.
14. (Autour le théorème de De Moivre) For $z=r(\cos (\theta)+i \sin (\theta)) \in \mathbb{C}$, prove using induction on n that for all $n \in \mathbb{Z}, z^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))$.

Extra Credit Problems.

1. Prove that the points z_{1}, z_{2}, z_{3} in the complex plane are vertices of an equilateral triangle if and only if

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}
$$

2. Let $\zeta=e^{2 \pi i / 5}$ so that $1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}$ are the vertices of a regular pentagon. The diagonals of this pentagon meet at the vertices of a smaller regular pentagon. Determine them.
3. (a) Show that for $A \neq 0$, the set of all points (x, y) in \mathbb{R}^{2} satisfying $A x^{2}+A y^{2}+B x+$ $C y+D=0$ is either empty or a circle. Determine the center and the radius. What happens when $A=0$?
(b) Suppose $z_{1}, z_{2} \in \mathbb{C}$ are distinct fixed points in \mathbb{C} and K is a fixed positive real number, $K \neq 1$. Show that the set of all $z \in \mathbb{C}$ satisfying

$$
\frac{\left|z-z_{1}\right|}{\left|z-z_{2}\right|}=K
$$

is a circle. Where is its center? What is its radius? How are z_{1}, z_{2} positioned vis à vis this circle? If we keep K fixed and move z_{1} along a straight line toward z_{2}, what happens to the center and radius of the circle? What happens when we move z_{1} along the same straight line away from z_{2} ? If we keep $z_{1}, z 2$ fixed and move K toward 0 or toward ∞, what happens to the circle? What happens when $K=1$?
4. (a) Let S be a set of size $n \geq 1$ and suppose r is an integer in the range $0 \leq r \leq n$. Let

$$
\mathbb{P}_{r}(S)=\{T \subseteq S| | T \mid=r\}
$$

be the set of all subsets of S of cardinality r. Use the multiplication counting principle to deduce that

$$
\left|\mathbb{P}_{r}(S)\right|=\frac{n!}{r!(n-r)!}
$$

This number is often denoted by $\binom{n}{r}$.
(b) With the above notations for n and r and for variables x and y, derive the binomial formula

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r} .
$$

5. (a) Use the well-ordering principle to prove the Principle of Double Induction: Suppose for each pair $(a, b) \in \mathbb{N} \times \mathbb{N}$, we have a statement $P(a, b)$. Suppose i) $P(1,1)$ is true, and ii) Whenever $P(k, l)$ true for some $(k, l) \in \mathbb{N} \times \mathbb{N}$, then $P(k+1, l)$ and $P(k, l+1)$ are also true. Then $P(a, b)$ is true for all $(a, b) \in \mathbb{N}$.
(b) Now prove a slight modification: Suppose for all integers $n, r \geq 1$ with $r \leq n$, we have a statement $P(n, r)$. Suppose i) $P(1,1)$ is true and ii) Whenever $P(k, l)$ is true for some $(k, l) \in \mathbb{N} \times \mathbb{N}$ with $l \leq k$, then $P(k+1, l)$ and $P(k+1, l+1)$ are true. Then $P(a, b)$ is true for all $(n, r) \in \mathbb{N}$ with $r \leq n$.
6. For a positive integer n, we let $I_{n}=\{k \in \mathbb{Z} \mid 1 \leq k \leq n\}$ be the set of integers from 1 to n. If T is a subset of I_{n}, let m_{T} be the least element of T. For $1 \leq r \leq n$, let $f(n, r)$ be the average, over all subsets T of I_{n} of cardinality r, of m_{T}. Recalling from problem 4 above that there are $\binom{n}{r}$ subsets of cardinality r in I_{n}, we have, therefore,

$$
f(n, r):=\frac{1}{\binom{n}{r}} \sum_{T \subseteq I_{n},|T|=r} m_{T}
$$

Prove that

$$
f(n, r)=\frac{n+1}{r+1} .
$$

