UMASS AMHERST MATH 300: HW 7

FARSHID HAJIR

Countable and uncoutable sets

1. (a) For sets X,Y, we write X ~ Y if there exists a bijection from X to Y. Recall
that for each n € N, P, = {1,2,...,n}; Py = {} is the empty set. Recall also that a set
X is called finite if there exists n € N such that X ~ P,, in which case we say that X has
cardinality n (or order n). Suppose X and Y are two finite sets of cardinality n. Show that
X ~Y, ie. show that there is a bijection from X to Y.

(b) Suppose X and Y are two infinite countable (also called “countably infinite”) sets.
Prove that X ~ Y.

2. Prove that N x N is countable.
3. Show that if X is a countable set, and Y C X, then Y is countable.

4. Give a bijection from (0,1) = {x € R|0 < 2 < 1} to R, thereby showing that
|(0,1)] = |R|. Hint: think about a function that has an asymptote going to —oo near 0 and
one going to +oo near 1.

5. (a) Show that if X and Y are countable sets, then X UY is a countable set. (Hint:
if X and Y are both countably infinite, say X = {z1,22,...} and Y = {y;,9s,...}, then
interleave the two sequences (the way the odds and evens are interleaved)).

(b) Let I = R\ Q be the set of irrational numbers. Prove that I is uncountable. (Hint:
Proof by contradiction is your friend).

6. Suppose X is a non-empty set and f : X — P(X) is defined f(z) = X \ z. Consider
the subset Yy = {x € X|z & f(x)} of X (which plays a prominent role in Cantor’s theorem).
Determine Y} for the particular f we have just defined.

7. (a) Convert the rational number 147.05 (written in base ten) to base 4.
(b) Convert the base 3 rational number (120.21); = (120.21212121 - - )3 to base ten.
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Complex Numbers

9. (There are no zero-divisors in C). Show that if z,w € C, and zw = 0 then either z =0
or w = 0. (you may use the fact that this is true for z,w € R).

10. (a) (Every non-zero complex number is invertible). Show that for each z € C such that
z # 0, there exists a unique w € C such that wz = 1, so it’s okay to write w = 27! =1/z.

(b) Use (a) to give another proof of the statement in Problem 9.

(c) For z = 3 + 41, determine 1/z and write it in the form a + bi with real numbers a, b.

11. (a) Show that for z € C, z = 0 if and only if |z| = 0.
(b) Prove that |zw| = |z||w].
(c) Prove using induction that for all n € Z, |2"| = |2|™.

12. (a) Show that for z,w € C, |z — w| is the usual distance from z to w.

(b) (Triangle Inequality) Give an algebraic proof of the fact that for z,w € C, |z —w| <
|z]+|w| and interpret this fact geometrically. Hint: First prove that if u € C, then ®(u) < |ul.
Next, argue that it suffices to show that |z — w]? < (]z| 4 |w|)?. Now justify each step in the
following:

|z —wl* = (2 = w)(Z = @) = |2 + |[w]® + 2R(—2W) < |2|* + |[w]* + 2[zW]| = (|2] + |w])*.

(c) Shade in the region {z € C | 1 < |z —i| < 2}. It is called an “annulus.” Hint: |z — i
is the distance from z to 7.

13. (a) Find four solutions in C of the equation z* = 1.

(b) Using your vast knowledge of trigonometry, evaluate { = cos(6) + isin(f) where 6 =
27 /6.

(c) Verify that 1,¢, ¢, ¢3,¢%, (5 are six distinct solutions of 26 = 1. They are called the
sixth roots of unity in C.

(d) Draw a fairly accurate picture of the unit circle showing that the roots of z* =1 and
2% =1 all lie on it. (Label the solutions). Use red for the 4 solutions of one equation and
Blue for the six solutions of the other.

14. (Autour le théoreme de De Moivre) For z = r(cos(#) + isin(f)) € C, prove using
induction on n that for all n € Z, 2™ = r"(cos(nf) + isin(nfh)).

Extra Credit Problems.

1. Prove that the points 21, 25, z3 in the complex plane are vertices of an equilateral triangle
if and only if

2 2 2
2]+ 25 + 25 = 2120 + 2123 + 2223.

2. Let ¢ = e*™/5 so that 1, ¢, (2, (3, (* are the vertices of a regular pentagon. The diagonals
of this pentagon meet at the vertices of a smaller regular pentagon. Determine them.
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3. (a) Show that for A # 0, the set of all points (z,y) in R? satisfying Az? + Ay? + Bz +
Cy+ D = 0 is either empty or a circle. Determine the center and the radius. What happens
when A = 07

(b) Suppose 21, 2 € C are distinct fixed points in C and K is a fixed positive real number,
K # 1. Show that the set of all z € C satisfying

|z — 2| B

|z — 29|
is a circle. Where is its center? What is its radius? How are zi, zo positioned vis a vis this
circle? If we keep K fixed and move z; along a straight line toward z,, what happens to the
center and radius of the circle? What happens when we move z; along the same straight line
away from 257 If we keep z1, 22 fixed and move K toward 0 or toward oo, what happens to
the circle? What happens when K = 17

4. (a) Let S be a set of size n > 1 and suppose r is an integer in the range 0 < r < n. Let
P.(S)={T CS||T|=r}

be the set of all subsets of S of cardinality . Use the multiplication counting principle to

deduce that |
n!
P.(9)| = ——.
B ()] ri(n —r)!
This number is often denoted by (Z)
(b) With the above notations for n and r and for variables z and y, derive the binomial

formula N
n __ n ron—r
(x4+y)" = g (r) AT

r=0

5. (a) Use the well-ordering principle to prove the Principle of Double Induction: Suppose
for each pair (a,b) € N x N, we have a statement P(a,b). Suppose i) P(1,1) is true, and ii)
Whenever P(k,[) true for some (k,l) € N x N, then P(k+1,1) and P(k,l+ 1) are also true.
Then P(a,b) is true for all (a,b) € N.

(b) Now prove a slight modification: Suppose for all integers n,r > 1 with r < n, we have
a statement P(n,r). Suppose i) P(1,1) is true and ii) Whenever P(k,!) is true for some
(k,1) € Nx N with [ <k, then P(k+1,1) and P(k+ 1,0+ 1) are true. Then P(a,b) is true
for all (n,r) € N with r <n.

6. For a positive integer n, we let I, = {k € Z | 1 < k < n} be the set of integers from 1
to n. If T is a subset of I,,, let mp be the least element of 7. For 1 < r < mn, let f(n,r) be
the average, over all subsets T" of I,, of cardinality r, of mr. Recalling from problem 4 above
that there are (':) subsets of cardinality r in I, we have, therefore,

1
fln,r) = m Z mr.
r) TCI, |T|=r
Prove that 41
n




