
UMASS AMHERST MATH 300 FALL 05 F. HAJIR

HW 6

1. Reading

You should read Part 7 in my online notes as well as Chapter 2 of Gilbert/Vanstone

2. Problems from Gilbert/Vanstone

Exercise Set 2: 11,18,27,30,36
Problem Set 2: 73

3. Problems from Farshid’s Brain

1. Suppose a, b, c ∈ Z.
(a) Show that if a|b and c 6= 0, then ca|cb.
(b) Show that if a|b and b|c, then a|c.
(c) Show that if a|b and a|c, then a|(mb + nc) for all m, n ∈ Z.

2. Show that there are arbitrarily long sequences of consecutive integers containing no
primes. In other words, show that given an integer N ≥ 1, there exists an integer a such
that a + 1, a + 2, . . . , a + N are all composites. Hint: try a = N ! + 1. Look for an “obvious”
divisor of a + 1, an “obvious” divisor of a + 2 etc.

3. Suppose a, b, n are integers, n ≥ 1 and a = nd + r, b = ne + s with 0 ≤ r, s < n, so
that r, s are the remainders for a÷ n and b÷ n, respectively. Show that r = s if and only if
n|(a − b). [In other words, two integers give the same remainder when divided by n if and
only if their difference is divisible by n.]

4. If n ≥ 1 and m1, · · · , mn ∈ Z are n integers whose product is divisibe by p, then at
least one of these integers is divisible by p, i.e. p|m1 · · ·mn implies that then there exists
1 ≤ j ≤ n such that p|mj. Hint: use induction on n.

5. (a) Calculate gcd(315, 168) using the Euclidean algorithm, then use this information
to calculate lcm(315, 168). Determine integers x, y such that 315x + 168y = gcd(315, 168).
You may use the Blankinship version of the Bezout algorithm if you wish. Now obtain the
prime factorizations of 315 and 168 to double-check your computation of the gcd and lcm of
315 and 168.

(b) Calculate gcd(89, 148) using the Euclidean algorithm.

6. (a) Show that if n > 1 is composite, then there exists d in the range 1 < d ≤
√

n such
that d|n. (Hint: you might want to use proof by contradiction).
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(b) Use (a) to show that if n is not divisible by any integers in the range [2,
√

n], then n
is prime.

(c) Use (b) to show that if n is not divisible by any primes in the range [2,
√

n], then n
is prime.

(d) Use the procedure in (c) to verify that 229 is prime.
(e) Suppose you write down all the primes from 2 to n. We know that 2 is a prime so we

circle it and cross out all other multiples of 2. The next uncrossed number is 3 and we claim
that 3 therefore must be prime. Explain why. Now cross out all the multiples of 3. The next
uncrossed number is 5 so we claim it must be a prime. We continue in this fashion until we
get to

√
n. Explain why all the remaining numbers are prime. Carry out this procedure for

n = 100 to find all the primes less than 100. This is called the Eratosthenes sieve. (You may
want to write them in 10 rows of 10 numbers each).

7. Prove that if n ∈ N, then gcd(n, n + 1) = 1.

8. Suppose x is a real number such that x+1/x is an integer. Show that xn +1/xn is also
an integer for all n ≥ 1. (Hint: Use complete induction on n).

9. Here is a “proof” by complete induction that all Fibonacci numbers are even! Your job
is to explain the error in the argument.

For n ≥ 0, let P (n) be the statement that Fn is even. We will prove P (n) by complete
induction on n. We check the base case, P (0): F0 = 0 is even. Now we move to the induction
step: We must show that if P (j) holds for 0 ≤ j ≤ n, then P (n) holds. Well, if P (j) holds
for 0 ≤ j ≤ n, then Fn+1 = Fn−1 + Fn is even because Fn−1 and Fn are even by P (n − 1)
and P (n), respectively. By Complete Induction, therefore, Fn is even for all n ≥ 0.

10. Show that for n ≥ 2, in any set of 2n − 1 integers, there is a subset of exactly 2n−1

of them whose sum is divisible by 2n−1. (Hint: use ordinary induction on n; assuming you
can do it for any set of size 2k − 1, suppose you have a set of size 2k+1 − 1; leaving out one
element, get two sets of size 2k−1 which are “nice,” but this is not enough – now use the
elements that have not yet been used to get a third nice set of size 2k−1!).

Extra Credit Problems.

A. Let a1, a2, . . . , a100 be a sequence of length 100 in N. Show that there is a non-trivial
subsequence of this sequence whose sum is divisible by 100. In other words, show that there
exists an integer N ≥ 1 and integers 1 ≤ i1 < i2 < · · · < iN ≤ 100 such that ai1+ai2+· · ·+ain

is divisible by 100.
Hint: Use the pigeon-whole principle as applied to the remainders of the numbers when

divided by 100.

B. It is a fact, due to Chebyshev, that for any integer n ≥ 1, there exists a prime in the
interval (n, 2n]. Use this fact to prove that the harmonic numbers defined by

Hk =
k∑

j=1

1

j
= 1 +

1

2
+

1

3
+ · · ·+ 1

k
,

are not integers for k > 1.
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C. Recalling the Fibonacci numbers from the previous homework, show that

Fn = FkFn−k + Fk−1Fn−k−1 for 1 ≤ k ≤ n− 1.

SuperExtra Credit Problems.

D. Let a1, a2, . . . , a51 be integers with 1 ≤ ai ≤ 100 for all 1 ≤ i ≤ 51. Prove that there
exists i 6= j such that ai|aj.

Super Duper Extra Credit Problems.

E. Let n ≥ 1 be a positive integer. Suppose you have 2n+1 not necessarily distinct positive
integers such that whenever one of the numbers is removed, the remaining 2n numbers can
be divided into two groups of size n that add up to the same number. Show that the numbers
are all the same.

To state this more formally, let S = {1, 2, 3, . . . , 2n, 2n + 1}. Suppose f : S → N is a map
such that for all x ∈ S, there exist sets T, U ⊂ S \ {x} such that T ∩ U = ∅, |T | = |U | = n,
and

∑
t∈T f(t) =

∑
u∈U f(u). Show that f is a constant function i.e. for all s1, s2 ∈ S,

f(s1) = f(s2).
Hint: It is relatively easy to prove that all the numbers have the same parity. Is this

helpful at all?


