UMASS AMHERST MATH 300 FALL 05 F. HAJIR

HW 6

1. Reading

You should read Part 7 in my online notes as well as Chapter 2 of Gilbert/Vanstone

2. Problems from Gilbert/Vanstone

Exercise Set 2: 11,18,27,30,36
Problem Set 2: 73

3. Problems from Farshid's Brain

1. Suppose $a, b, c \in \mathbb{Z}$.
(a) Show that if $a \mid b$ and $c \neq 0$, then $c a \mid c b$.
(b) Show that if $a \mid b$ and $b \mid c$, then $a \mid c$.
(c) Show that if $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ for all $m, n \in \mathbb{Z}$.
2. Show that there are arbitrarily long sequences of consecutive integers containing no primes. In other words, show that given an integer $N \geq 1$, there exists an integer a such that $a+1, a+2, \ldots, a+N$ are all composites. Hint: try $a=N!+1$. Look for an "obvious" divisor of $a+1$, an "obvious" divisor of $a+2$ etc.
3. Suppose a, b, n are integers, $n \geq 1$ and $a=n d+r, b=n e+s$ with $0 \leq r, s<n$, so that r, s are the remainders for $a \div n$ and $b \div n$, respectively. Show that $r=s$ if and only if $n \mid(a-b)$. [In other words, two integers give the same remainder when divided by n if and only if their difference is divisible by n.]
4. If $n \geq 1$ and $m_{1}, \cdots, m_{n} \in \mathbb{Z}$ are n integers whose product is divisibe by p, then at least one of these integers is divisible by p, i.e. $p \mid m_{1} \cdots m_{n}$ implies that then there exists $1 \leq j \leq n$ such that $p \mid m_{j}$. Hint: use induction on n.
5. (a) Calculate $\operatorname{gcd}(315,168)$ using the Euclidean algorithm, then use this information to calculate $\operatorname{lcm}(315,168)$. Determine integers x, y such that $315 x+168 y=\operatorname{gcd}(315,168)$. You may use the Blankinship version of the Bezout algorithm if you wish. Now obtain the prime factorizations of 315 and 168 to double-check your computation of the gcd and lcm of 315 and 168.
(b) Calculate $\operatorname{gcd}(89,148)$ using the Euclidean algorithm.
6. (a) Show that if $n>1$ is composite, then there exists d in the range $1<d \leq \sqrt{n}$ such that $d \mid n$. (Hint: you might want to use proof by contradiction).
(b) Use (a) to show that if n is not divisible by any integers in the range $[2, \sqrt{n}]$, then n is prime.
(c) Use (b) to show that if n is not divisible by any primes in the range $[2, \sqrt{n}]$, then n is prime.
(d) Use the procedure in (c) to verify that 229 is prime.
(e) Suppose you write down all the primes from 2 to n. We know that 2 is a prime so we circle it and cross out all other multiples of 2 . The next uncrossed number is 3 and we claim that 3 therefore must be prime. Explain why. Now cross out all the multiples of 3 . The next uncrossed number is 5 so we claim it must be a prime. We continue in this fashion until we get to \sqrt{n}. Explain why all the remaining numbers are prime. Carry out this procedure for $n=100$ to find all the primes less than 100. This is called the Eratosthenes sieve. (You may want to write them in 10 rows of 10 numbers each).
7. Prove that if $n \in \mathbb{N}$, then $\operatorname{gcd}(n, n+1)=1$.
8. Suppose x is a real number such that $x+1 / x$ is an integer. Show that $x^{n}+1 / x^{n}$ is also an integer for all $n \geq 1$. (Hint: Use complete induction on n).
9. Here is a "proof" by complete induction that all Fibonacci numbers are even! Your job is to explain the error in the argument.

For $n \geq 0$, let $P(n)$ be the statement that F_{n} is even. We will prove $P(n)$ by complete induction on n. We check the base case, $P(0): F_{0}=0$ is even. Now we move to the induction step: We must show that if $P(j)$ holds for $0 \leq j \leq n$, then $P(n)$ holds. Well, if $P(j)$ holds for $0 \leq j \leq n$, then $F_{n+1}=F_{n-1}+F_{n}$ is even because F_{n-1} and F_{n} are even by $P(n-1)$ and $P(n)$, respectively. By Complete Induction, therefore, F_{n} is even for all $n \geq 0$.
10. Show that for $n \geq 2$, in any set of $2^{n}-1$ integers, there is a subset of exactly 2^{n-1} of them whose sum is divisible by 2^{n-1}. (Hint: use ordinary induction on n; assuming you can do it for any set of size $2^{k}-1$, suppose you have a set of size $2^{k+1}-1$; leaving out one element, get two sets of size 2^{k-1} which are "nice," but this is not enough - now use the elements that have not yet been used to get a third nice set of size 2^{k-1} !).

Extra Credit Problems.

A. Let $a_{1}, a_{2}, \ldots, a_{100}$ be a sequence of length 100 in \mathbb{N}. Show that there is a non-trivial subsequence of this sequence whose sum is divisible by 100. In other words, show that there exists an integer $N \geq 1$ and integers $1 \leq i_{1}<i_{2}<\cdots<i_{N} \leq 100$ such that $a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{n}}$ is divisible by 100 .

Hint: Use the pigeon-whole principle as applied to the remainders of the numbers when divided by 100 .
B. It is a fact, due to Chebyshev, that for any integer $n \geq 1$, there exists a prime in the interval ($n, 2 n]$. Use this fact to prove that the harmonic numbers defined by

$$
H_{k}=\sum_{j=1}^{k} \frac{1}{j}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}
$$

are not integers for $k>1$.
C. Recalling the Fibonacci numbers from the previous homework, show that

$$
F_{n}=F_{k} F_{n-k}+F_{k-1} F_{n-k-1} \quad \text { for } 1 \leq k \leq n-1 .
$$

SuperExtra Credit Problems.

D. Let $a_{1}, a_{2}, \ldots, a_{51}$ be integers with $1 \leq a_{i} \leq 100$ for all $1 \leq i \leq 51$. Prove that there exists $i \neq j$ such that $a_{i} \mid a_{j}$.

Super Duper Extra Credit Problems.

E. Let $n \geq 1$ be a positive integer. Suppose you have $2 n+1$ not necessarily distinct positive integers such that whenever one of the numbers is removed, the remaining $2 n$ numbers can be divided into two groups of size n that add up to the same number. Show that the numbers are all the same.

To state this more formally, let $S=\{1,2,3, \ldots, 2 n, 2 n+1\}$. Suppose $f: S \rightarrow \mathbb{N}$ is a map such that for all $x \in S$, there exist sets $T, U \subset S \backslash\{x\}$ such that $T \cap U=\emptyset,|T|=|U|=n$, and $\sum_{t \in T} f(t)=\sum_{u \in U} f(u)$. Show that f is a constant function i.e. for all $s_{1}, s_{2} \in S$, $f\left(s_{1}\right)=f\left(s_{2}\right)$.

Hint: It is relatively easy to prove that all the numbers have the same parity. Is this helpful at all?

