
UMASS AMHERST MATH 300 FALL ’05, F. HAJIR

HOMEWORK 4: EQUIVALENCE RELATIONS AND PARTITIONS

HW 4 is due in class on Thursday October 20.

1. Reading

You should read Part 5 of Farshid’s notes.

2. Problems from Gilbert/Vanstone

3. Problems from Farshid’s Brain

Part 1. (Equivalence) Relations and Partitions

1. Consider the following relation on Z: if a, b ∈ Z, then a ∼ b if and only if a · b is even.
Prove or Disprove: ∼ defines an equivalence relation on Z.

2. Suppose X is a set and ∼ is an equivalence relation on X. Suppose x, z ∈ X. Prove
that either Eq(x) = Eq(z) or else Eq(x) ∩ Eq(z) = ∅. [Hint: In other words, show that
cl(x) 6= cl(z) ⇒ cl(x) ∩ cl(z) = ∅.

3. Suppose ∼ is an equivalence relation on a set X with graph R. For x ∈ X, show that
Rx,• = R•,x.

4. If X is a set and ∼ is an equivalence relation on it, then we have a map X → X/ ∼
defined by x 7→ cl(x). Show that this map is surjective. (Hint: this is a very easy problem;
it requires only a careful examination of the definitions involved).

5. Show that every quotient of a countable set is countable, i.e. show that if S is a

countable set and ∼ is an equivalence relation on S, then S̃ is also countable.

6. Suppose ∆ ⊆ P(X) \ ∅ is a collection of non-empty subsets of X. Show that ∆ is a
partition of X if and only if for every x ∈ X there exists a unique S ∈ ∆ such that x ∈ S.

7. Suppose X = Z is the set of integers, and let n be a positive integer. Define an
equivalence relation on X as follows. For a, b ∈ Z, we write a ∼n b if and only if n divides
a − b, i.e. if and only if a − b = nk for some k ∈ Z. This equivalence relation is called
congruence modulo n. The more common notation is a ≡ b mod n.

(i) Show that this really is an equivalence relation.
(ii) Show that if n = 1, then all integers are equivalent to each other.
(iii) Show that if n = 2, then the resulting equivalence relation is the parity equivalence

relation discussed above.
(iv) Show that under ∼n, Z breaks up into n equivalence relations corresponding to

the n possible remainders 0, 1, 2, · · · , n − 1 for division by n. Thus, the set Rem(n) =
1
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{0, 1, 2, . . . , n− 1} is a natural indexing set for the partition of Z corresponding to congru-
ence modulo n.

(v) Use (iv) to show that we can write Z/ ∼n= {X0, X1, · · · , Xn−1} where

Xj = {a ∈ Z| the remainder of a divided by n is j}.

8. In this problem, you will show that the two concepts of “equivalence relation on a set
X” and “partition of X” are really the same concept, i.e. you will prove the fundamental
theorem of equivalence relations.

(a) Suppose X is a set equipped with an equivalence relation ∼. Show the the set of
equivalence classes of X under ∼ is a partition of X.

(b) Conversely, suppose ∆ = {Xα|α ∈ A} is a partition of a set X. Now define a relation
∼∆ on X as follows: if x, y ∈ X, then x ∼∆ y if and only if there exists α ∈ A such that
x, y ∈ Xα. Prove that ∼∆ is an equivalence relation on X.

(c) Prove that if ∼ is an equivalence relation on X, then ∼X̃=∼.
(d) Prove that if ∆ is a partition of X, then X/ ∼∆ is just ∆.

9. With the fundamental theorem of equivalence relations we established that equivalence
relations on X and partitions on X are basically the same object and give rise to a map

X → X̃. In this problem, you will how a map X → Y induces an equivalence relation on X.
Suppose X, Y are sets and f : X → Y is an arbitrary map. For y ∈ Y , the fiber of f at

y (or above y) is defined to be the set f−1(y) = {x ∈ X | f(x) = y}. The notation f−1(y)
should not be confused with the inverse function f−1. Note that we are not assuming that
f is bijective. Thus, the set f−1(y) could be empty or it could have more than one element.
If f is bijective, however, then for each y ∈ Y , f−1(y) is a singleton set whose only element
is f−1(z).

Let ∆ be the set of non-empty fibers of f , i.e. ∆ = {f−1(y) | y ∈ Image(f)}.
(a) Show that ∆ is a partition of X.
(b) Define a relation ∼ on X by the rule x ∼ x′ if and only if f(x) = f(x′) for x, x′ ∈ X.

Prove that ∼ defines an equivalence relation on X.
(c) For the relation ∼ defined in (b), prove that the equivalence classes of ∼ coincide with

the elements of ∆, in other words, the non-empty fibers of f are precisely the equivalence
classes of the equivalence relation ∼.

(d) For the equivalence relation ∼ defined in (b), define a simple and natural bijection

ϕ : Image(f) → X̃ explicitly. Also define explicity the inverse map ϕ−1 : X̃ → Image(f)
making sure to show that this map is well-defined.

(e) Suppose n ≥ 1 is a positive integer, and recall that Rem(n) = {0, 1, 2, . . . , n− 1}. Let
X = Z and Y = Rem(n). Define the reduction map modulo n by f : Z → Rem(n) where
f(x) is the remainder when x is divided by n, i.e. f(x) = r where x = nq + r for some q ∈ Z
and 0 ≤ r ≤ n − 1. Show that the fibers of the map f are precisely the equivalence classes
of congruence modulo n, and thus the equivalence relation one obtains on Z by the method
of (b) is just congruence modulo n.

(f) Suppose X = C∞(R) is the set consisting of all infinitely-differentiable functions on
R, i.e. functions g : R → R such that g′, g′′, . . . , g(n) are well-defined functions from R to R
for all n ≥ 1. Define a relation ∼ on X as follows: for g, h ∈ X, g ∼ h if and only if g − h
is a constant function i.e. if and only if there exists c ∈ R such that g(x)− h(x) = c for all
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x ∈ R. There is a very familiar map D : X ⇒ X such that the fibers of D are exactly the
∼-equivalence classes of ∼. What is D?! Explain. Letting z : R → R be the zero map, i.e.
z(x) = 0 for all x ∈ R, what is the fiber D−1(z) above z?


