UMASS AMHERST MATH 300 FALL '05, F. HAJIR

HOMEWORK 4: EQUIVALENCE RELATIONS AND PARTITIONS

HW 4 is due in class on Thursday October 20.

1. Reading

You should read Part 5 of Farshid's notes.

- 2. Problems from Gilbert/Vanstone
 - 3. Problems from Farshid's Brain

Part 1. (Equivalence) Relations and Partitions

- 1. Consider the following relation on \mathbb{Z} : if $a, b \in \mathbb{Z}$, then $a \sim b$ if and only if $a \cdot b$ is even. Prove or Disprove: \sim defines an equivalence relation on \mathbb{Z} .
- 2. Suppose X is a set and \sim is an equivalence relation on X. Suppose $x, z \in X$. Prove that either Eq(x) = Eq(z) or else $\text{Eq}(x) \cap \text{Eq}(z) = \emptyset$. [Hint: In other words, show that $\text{cl}(x) \neq \text{cl}(z) \Rightarrow \text{cl}(x) \cap \text{cl}(z) = \emptyset$.
- 3. Suppose \sim is an equivalence relation on a set X with graph R. For $x \in X$, show that $R_{x,\bullet} = R_{\bullet,x}$.
- 4. If X is a set and \sim is an equivalence relation on it, then we have a map $X \to X/\sim$ defined by $x \mapsto \operatorname{cl}(x)$. Show that this map is surjective. (Hint: this is a very easy problem; it requires only a careful examination of the definitions involved).
- 5. Show that every quotient of a countable set is countable, i.e. show that if S is a countable set and \sim is an equivalence relation on S, then \widetilde{S} is also countable.
- 6. Suppose $\Delta \subseteq \mathcal{P}(X) \setminus \emptyset$ is a collection of non-empty subsets of X. Show that Δ is a partition of X if and only if for every $x \in X$ there exists a unique $S \in \Delta$ such that $x \in S$.
- 7. Suppose $X = \mathbb{Z}$ is the set of integers, and let n be a positive integer. Define an equivalence relation on X as follows. For $a, b \in \mathbb{Z}$, we write $a \sim_n b$ if and only if n divides a b, i.e. if and only if a b = nk for some $k \in \mathbb{Z}$. This equivalence relation is called congruence modulo n. The more common notation is $a \equiv b \mod n$.
 - (i) Show that this really is an equivalence relation.
 - (ii) Show that if n=1, then all integers are equivalent to each other.
- (iii) Show that if n = 2, then the resulting equivalence relation is the parity equivalence relation discussed above.
- (iv) Show that under \sim_n , \mathbb{Z} breaks up into n equivalence relations corresponding to the n possible remainders $0, 1, 2, \dots, n-1$ for division by n. Thus, the set Rem(n) =

- $\{0, 1, 2, \ldots, n-1\}$ is a natural indexing set for the partition of \mathbb{Z} corresponding to congruence modulo n.
 - (v) Use (iv) to show that we can write $\mathbb{Z}/\sim_n=\{X_0,X_1,\cdots,X_{n-1}\}$ where

$$X_j = \{a \in \mathbb{Z} | \text{ the remainder of } a \text{ divided by } n \text{ is } j\}.$$

- 8. In this problem, you will show that the two concepts of "equivalence relation on a set X" and "partition of X" are really the same concept, i.e. you will prove the fundamental theorem of equivalence relations.
- (a) Suppose X is a set equipped with an equivalence relation \sim . Show the set of equivalence classes of X under \sim is a partition of X.
- (b) Conversely, suppose $\Delta = \{X_{\alpha} | \alpha \in A\}$ is a partition of a set X. Now define a relation \sim_{Δ} on X as follows: if $x, y \in X$, then $x \sim_{\Delta} y$ if and only if there exists $\alpha \in A$ such that $x, y \in X_{\alpha}$. Prove that \sim_{Δ} is an equivalence relation on X.
 - (c) Prove that if \sim is an equivalence relation on X, then $\sim_{\widetilde{X}} = \sim$.
 - (d) Prove that if Δ is a partition of X, then X/\sim_{Δ} is just Δ .
- 9. With the fundamental theorem of equivalence relations we established that equivalence relations on X and partitions on X are basically the same object and give rise to a map $X \to \widetilde{X}$. In this problem, you will how a map $X \to Y$ induces an equivalence relation on X. Suppose X,Y are sets and $f:X\to Y$ is an arbitrary map. For $y\in Y$, the fiber of f at y (or above y) is defined to be the set $\mathbf{f}^{-1}(y)=\{x\in X\mid f(x)=y\}$. The notation $\mathbf{f}^{-1}(y)$ should not be confused with the inverse function f^{-1} . Note that we are not assuming that f is bijective. Thus, the set $\mathbf{f}^{-1}(y)$ could be empty or it could have more than one element. If f is bijective, however, then for each $y\in Y$, $\mathbf{f}^{-1}(y)$ is a singleton set whose only element is $f^{-1}(z)$.
 - Let Δ be the set of **non-empty** fibers of f, i.e. $\Delta = \{\mathbf{f}^{-1}(y) \mid y \in \text{Image}(f)\}.$
 - (a) Show that Δ is a partition of X.
- (b) Define a relation \sim on X by the rule $x \sim x'$ if and only if f(x) = f(x') for $x, x' \in X$. Prove that \sim defines an equivalence relation on X.
- (c) For the relation \sim defined in (b), prove that the equivalence classes of \sim coincide with the elements of Δ , in other words, the non-empty fibers of f are precisely the equivalence classes of the equivalence relation \sim .
- (d) For the equivalence relation \sim defined in (b), define a simple and natural bijection $\varphi: \operatorname{Image}(f) \to \widetilde{X}$ explicitly. Also define explicitly the inverse map $\varphi^{-1}: \widetilde{X} \to \operatorname{Image}(f)$ making sure to show that this map is well-defined.
- (e) Suppose $n \ge 1$ is a positive integer, and recall that $\operatorname{Rem}(n) = \{0, 1, 2, \dots, n-1\}$. Let $X = \mathbb{Z}$ and $Y = \operatorname{Rem}(n)$. Define the reduction map modulo n by $f : \mathbb{Z} \to \operatorname{Rem}(n)$ where f(x) is the remainder when x is divided by n, i.e. f(x) = r where x = nq + r for some $q \in \mathbb{Z}$ and $0 \le r \le n 1$. Show that the fibers of the map f are precisely the equivalence classes of congruence modulo n, and thus the equivalence relation one obtains on \mathbb{Z} by the method of (b) is just congruence modulo n.
- (f) Suppose $X = C^{\infty}(\mathbb{R})$ is the set consisting of all infinitely-differentiable functions on \mathbb{R} , i.e. functions $g : \mathbb{R} \to \mathbb{R}$ such that $g', g'', \dots, g^{(n)}$ are well-defined functions from \mathbb{R} to \mathbb{R} for all $n \geq 1$. Define a relation \sim on X as follows: for $g, h \in X$, $g \sim h$ if and only if g h is a constant function i.e. if and only if there exists $c \in R$ such that g(x) h(x) = c for all

 $x \in \mathbb{R}$. There is a very familiar map $D: X \Rightarrow X$ such that the fibers of D are exactly the \sim -equivalence classes of \sim . What is D?! Explain. Letting $z: \mathbb{R} \to \mathbb{R}$ be the zero map, i.e. z(x) = 0 for all $x \in \mathbb{R}$, what is the fiber $\mathbf{D}^{-1}(z)$ above z?