UMASS AMHERST MATH 300 FALL '05, F. HAJIR

HOMEWORK 4: EQUIVALENCE RELATIONS AND PARTITIONS

HW 4 is due in class on Thursday October 20.

1. Reading

You should read Part 5 of Farshid's notes.

2. Problems from Gilbert/Vanstone

3. Problems from Farshid's Brain

Part 1. (Equivalence) Relations and Partitions

1. Consider the following relation on \mathbb{Z} : if $a, b \in \mathbb{Z}$, then $a \sim b$ if and only if $a \cdot b$ is even. Prove or Disprove: \sim defines an equivalence relation on \mathbb{Z}.
2. Suppose X is a set and \sim is an equivalence relation on X. Suppose $x, z \in X$. Prove that either $\operatorname{Eq}(x)=\operatorname{Eq}(z)$ or else $\operatorname{Eq}(x) \cap \operatorname{Eq}(z)=\emptyset$. [Hint: In other words, show that $\operatorname{cl}(x) \neq \operatorname{cl}(z) \Rightarrow \operatorname{cl}(x) \cap \operatorname{cl}(z)=\emptyset$.
3. Suppose \sim is an equivalence relation on a set X with graph R. For $x \in X$, show that $R_{x, \bullet}=R_{\bullet, x}$.
4. If X is a set and \sim is an equivalence relation on it, then we have a map $X \rightarrow X / \sim$ defined by $x \mapsto \mathrm{cl}(x)$. Show that this map is surjective. (Hint: this is a very easy problem; it requires only a careful examination of the definitions involved).
5. Show that every quotient of a countable set is countable, i.e. show that if S is a countable set and \sim is an equivalence relation on S, then \widetilde{S} is also countable.
6. Suppose $\Delta \subseteq \mathcal{P}(X) \backslash \emptyset$ is a collection of non-empty subsets of X. Show that Δ is a partition of X if and only if for every $x \in X$ there exists a unique $S \in \Delta$ such that $x \in S$.
7. Suppose $X=\mathbb{Z}$ is the set of integers, and let n be a positive integer. Define an equivalence relation on X as follows. For $a, b \in \mathbb{Z}$, we write $a \sim_{n} b$ if and only if n divides $a-b$, i.e. if and only if $a-b=n k$ for some $k \in \mathbb{Z}$. This equivalence relation is called congruence modulo n. The more common notation is $a \equiv b \bmod n$.
(i) Show that this really is an equivalence relation.
(ii) Show that if $n=1$, then all integers are equivalent to each other.
(iii) Show that if $n=2$, then the resulting equivalence relation is the parity equivalence relation discussed above.
(iv) Show that under \sim_{n}, \mathbb{Z} breaks up into n equivalence relations corresponding to the n possible remainders $0,1,2, \cdots, n-1$ for division by n. Thus, the set $\operatorname{Rem}(n)=$
$\{0,1,2, \ldots, n-1\}$ is a natural indexing set for the partition of \mathbb{Z} corresponding to congruence modulo n.
(v) Use (iv) to show that we can write $\mathbb{Z} / \sim_{n}=\left\{X_{0}, X_{1}, \cdots, X_{n-1}\right\}$ where

$$
X_{j}=\{a \in \mathbb{Z} \mid \text { the remainder of } a \text { divided by } n \text { is } j\} .
$$

8. In this problem, you will show that the two concepts of "equivalence relation on a set X " and "partition of X " are really the same concept, i.e. you will prove the fundamental theorem of equivalence relations.
(a) Suppose X is a set equipped with an equivalence relation \sim. Show the the set of equivalence classes of X under \sim is a partition of X.
(b) Conversely, suppose $\Delta=\left\{X_{\alpha} \mid \alpha \in A\right\}$ is a partition of a set X. Now define a relation \sim_{Δ} on X as follows: if $x, y \in X$, then $x \sim_{\Delta} y$ if and only if there exists $\alpha \in A$ such that $x, y \in X_{\alpha}$. Prove that \sim_{Δ} is an equivalence relation on X.
(c) Prove that if \sim is an equivalence relation on X, then $\sim_{\tilde{X}}=\sim$.
(d) Prove that if Δ is a partition of X, then X / \sim_{Δ} is just Δ.
9. With the fundamental theorem of equivalence relations we established that equivalence relations on X and partitions on X are basically the same object and give rise to a map $X \rightarrow \widetilde{X}$. In this problem, you will how a map $X \rightarrow Y$ induces an equivalence relation on X.

Suppose X, Y are sets and $f: X \rightarrow Y$ is an arbitrary map. For $y \in Y$, the fiber of f at y (or above y) is defined to be the set $\mathbf{f}^{-1}(y)=\{x \in X \mid f(x)=y\}$. The notation $\mathbf{f}^{-1}(y)$ should not be confused with the inverse function f^{-1}. Note that we are not assuming that f is bijective. Thus, the set $\mathbf{f}^{-1}(y)$ could be empty or it could have more than one element. If f is bijective, however, then for each $y \in Y, \mathbf{f}^{-1}(y)$ is a singleton set whose only element is $f^{-1}(z)$.

Let Δ be the set of non-empty fibers of f, i.e. $\Delta=\left\{\mathbf{f}^{-1}(y) \mid y \in \operatorname{Image}(f)\right\}$.
(a) Show that Δ is a partition of X.
(b) Define a relation \sim on X by the rule $x \sim x^{\prime}$ if and only if $f(x)=f\left(x^{\prime}\right)$ for $x, x^{\prime} \in X$. Prove that \sim defines an equivalence relation on X.
(c) For the relation \sim defined in (b), prove that the equivalence classes of \sim coincide with the elements of Δ, in other words, the non-empty fibers of f are precisely the equivalence classes of the equivalence relation \sim.
(d) For the equivalence relation \sim defined in (b), define a simple and natural bijection $\varphi: \operatorname{Image}(f) \rightarrow \widetilde{X}$ explicitly. Also define explicity the inverse map $\varphi^{-1}: \widetilde{X} \rightarrow \operatorname{Image}(f)$ making sure to show that this map is well-defined.
(e) Suppose $n \geq 1$ is a positive integer, and recall that $\operatorname{Rem}(n)=\{0,1,2, \ldots, n-1\}$. Let $X=\mathbb{Z}$ and $Y=\operatorname{Rem}(n)$. Define the reduction map modulo n by $f: \mathbb{Z} \rightarrow \operatorname{Rem}(n)$ where $f(x)$ is the remainder when x is divided by n, i.e. $f(x)=r$ where $x=n q+r$ for some $q \in \mathbb{Z}$ and $0 \leq r \leq n-1$. Show that the fibers of the map f are precisely the equivalence classes of congruence modulo n, and thus the equivalence relation one obtains on \mathbb{Z} by the method of (b) is just congruence modulo n.
(f) Suppose $X=C^{\infty}(\mathbb{R})$ is the set consisting of all infinitely-differentiable functions on \mathbb{R}, i.e. functions $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g^{\prime}, g^{\prime \prime}, \ldots, g^{(n)}$ are well-defined functions from \mathbb{R} to \mathbb{R} for all $n \geq 1$. Define a relation \sim on X as follows: for $g, h \in X, g \sim h$ if and only if $g-h$ is a constant function i.e. if and only if there exists $c \in R$ such that $g(x)-h(x)=c$ for all
$x \in \mathbb{R}$. There is a very familiar map $D: X \Rightarrow X$ such that the fibers of D are exactly the \sim-equivalence classes of \sim. What is D ?! Explain. Letting $z: \mathbb{R} \rightarrow \mathbb{R}$ be the zero map, i.e. $z(x)=0$ for all $x \in \mathbb{R}$, what is the fiber $\mathbf{D}^{-1}(z)$ above z ?

