UMASS AMHERST MATH 300 FALL '05, F. HAJIR

HOMEWORK 2: LOGIC AND SETS

1. Reading

You should read all of Chatper 1 in Gilbert/Vanstone as well as Part II of Farshid's class notes.

2. Problems from Gilbert/Vanstone Chapter 1

Exercise Set 1 (p. 20): 1-13,25,41-44, 56,58,60, 64, 66,69.

Problem Set 1 (p. 22): 74,76.

3. Problems from Farshid's brain

- 1. Prove that $P \Rightarrow (P \lor Q)$ is a tautology, i.e. its truth table has value "True" in all cases.
- 2. (a) Prove that if X is an infinite set, then X has an infinite number of subsets.
- (b) Prove that if a set X has a finite number of subsets, then X is a finite set.
- (c) What is the relationship between the Proposition in (b) and the Proposition in (c)? Can you prove (c) using (a) and (b)?
- 3. (a) Suppose the union of ten sets $A_1 \cup A_2 \cup \cdots \cup A_{10}$ equals A_1 . What can you conclude about these sets?
- (b) Suppose the intersection of ten sets $B_1 \cap B_2 \cap \cdots \cap B_{10}$ is B_1 . What can you conclude about these sets?
- 4. Consider the sets $A = \{0, 1\}$, $B = \{a, b, c\}$. List the elements of the sets $A \times A$, $A \times B$, $B \times A$, $A \times B \times A$.
 - 5. Prove that if $P \Rightarrow Q$ and $Q \Rightarrow R$ and $R \Rightarrow P$, then P, Q, R are all pairwise equivalent.

4. Extra Credit

1. Construct a sequence of sets $S_1, S_2, S_3, ...$ (one for each natural number) such that for any finite subset $\{i_1, ..., i_n\} \subset \mathbb{N}$ of the natural numbers, the intersection $S_{i_1} \cap \cdots \cap S_{i_n}$ is an infinite set, but $\cap_{n>1} S_n = \{\}$.