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This talk will discuss

• What are Mumford-Tate groups and Mumford-

Tate domains?

• What are they good for?

• What is known about them?

• What would we like to know that isn’t known,

and why?
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I. Introductory material

A. Polarized Hodge structures

• V is a Q-vector space

• S1 = {z = eiθ}, z̄ = z−1

Any representation

(∗) ϕ : S1 → Aut(VR)

decomposes on VC into eigenspaces

(∗∗)





VC = ⊕V p,q, V p,q
= V q,p

ϕ(z) = zpz̄q = ei(p−q) on V p,q.

Definition. A Hodge structure of weight n is

given by (∗) where p + q = n in (∗∗).
We set C = ϕ(i) (Weil operator)

•Q : V ⊗ V → Q, non-degenerate and
tQ = (−1)nQ.
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Definition.A polarized Hodge structure (V,Q, ϕ)

of weight n is given by ϕ : S1 → Aut(VR, Q) as

above and where the Hodge-Riemann bilinear

relations





(i) Q(V p,q, V p
′,q′) = 0 p′ 6= n− p

(ii) Q(v, Cv̄) > 0, 0 6= v ∈ VC

are satisfied.

Polarized Hodge structures admit the usual op-

erations (⊕,⊗,Hom) of linear algebra. They

form a semi-simple abelian category.
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Hodge’s theorem: The primitive cohomol-

ogy Hn(X,Q)prim of a smooth, complex pro-

jective algebraic variety has a (functorial) PHS

of weight n.
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B. Mumford-Tate groups

•G = Aut(V,Q) — this is a Q-algebraic

group — note that

ϕ : S1 → G(R).

Definition I: The Mumford-Tate group Mϕ

associated to (V,Q, ϕ) is the smallest Q-algebraic

subgroup of G such that ϕ : S1 →M (R).

<◦>

For a PHS (W,QW , ϕw) of even weight n =

2m, the Hodge classes are

Hgψ = W ∩Wm,m.

Hodge conjecture: Hg(H∗(X,Q)) are rep-

resented by algebraic cycles

<◦>
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Set





T k,l= V ⊗k ⊗ V̌ ⊗l

T •,•= ⊕T k,l

Hg
•,•
ϕ = Hodge tensors in T •,•

Definition II: The Mumford-Tate group M ′
ϕ

is the subgroup of Aut(V ) that fixes all Hodge

tensors.

Theorem: Mϕ = M ′
ϕ.

Example: X = Eτ = C/Z + Zτ and V =

H1(Eτ ,Q). Then

Mτ =

{
Q(τ )∗ if τ is imaginary quadratic

SL2 otherwise
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•Mϕ is a reductive Q-algebraic group. Thus

it is an almost product

M = M1 × · · · ×Mk × T

where Mi is simple and T is a torus.
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C. Mumford-Tate domains

Definition. Given (V,Q) and Hodge numbers

h = {hp,q = hq,p,
∑

p+q=n

hp,q = dimV }

the period domain

Dh =

{
PHS’s (V,Q, ϕ)

with dimV p,q = hp,q

}
.

<◦>

Given a reference point ϕ ∈ Dh,

Dh = G(R)/H̃ϕ

where H̃ϕ = ZG(ϕ(S1)) is the compact isotropy

group fixing ϕ.
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Definition. Given ϕ ∈ Dh with MT-group

Mϕ, the Mumford-Tate domain

DM,ϕ ⊂ Dh

is the Mϕ(R)-oribit of ϕ.

<◦>

 DM,ϕ = Mϕ(R)/Hϕ where

Hϕ = ZMϕ
(ϕ(S1)).

Theorem: DM,ϕ is the component through

ϕ of the subvariety

NLϕ = {ϕ′ ∈ Dh : Hg
•,•
ϕ′ ⊇ Hg

•,•
ϕ }.

Classical case: n = 1 and Γ\DM,ϕ are the

(complex points of) Shimura varieties.
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The non-classical case (or non-Shimura vari-

ety case) is comparatively in its early stage of de-

velopment. For example, automorphic forms —

especially their arithmetic aspects — is replaced

by “automorphic cohomology”, whose possible

arithmetic and geometric meanings are a major

open issue.
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II. Hodge groups and Hodge domains

A. Hodge representations

• M is a a reductive, linear Q-algebraic group

Definition.A Hodge representation (M,ρ, ϕ)

is given by a Q-vector space V and representa-

tion /Q

ρ : M → Aut(V )

such that (i) there is an invariant bilinear form

Q : V ⊗ V → Q with tQ = (−1)nQ, and (ii)

there is

ϕ : S1 →M (R)

such that (V,Q, ρ ◦ ϕ) is a polarized Hodge

structure of weight n.
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Since M is an almost direct product of sim-

ple Q-algebraic groups and an algebraic torus,1

without essential loss of generality we shall as-

sume that M is simple.

B. Hodge groups and Hodge domains

Definitions. (i) A Hodge group is an M that

admits a Hodge representation.

(ii) A Hodge domain is DM,ϕ = M (R)/Zϕ

where (M,ρ, ϕ) is a Hodge representation and

Zϕ = ZM (ϕ(S1)) ⊂M (R).

1The torus case is basically the study of CM-Hodge structures; this
is very interesting and will be briefly mentioned below.
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Proposition: For any Hodge representation

(M,ρ, ϕ), the corresponding Mumford-Tate do-

main is biholomorphic as a homogeneous com-

plex manifold to the Hodge domainDM,ϕ. More-

over, the infinitesimal period relations2 corre-

spond.

<◦>

Thus, we feel that Hodge groups and Hodge

domains are the basic universal objects in Hodge

theory.

C. Classification

Theorem: (i) M is a Hodge group if, and

only if, there is ϕ : S1 → M (R) such that

2To be defined later. Briefly, any variation of Hodge structure
has tangent spaces contained in an invariant, canonical distribution
W ⊂ TDM,ϕ.
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(m, B,Adϕ) is a polarized Hodge structure. (ii)

If M is a Hodge group, then for any ρ : M →
Aut(V,Q), (V,±Q, ρ ◦ ϕ) is a polarized Hodge

structure.

<◦>

Theorem: The following are equivalent:

(i)M is a Hodge group

(ii)M is a semi-simple Q-algebraic group such

that L2(M (R)) has non-trivial discrete se-

ries summands.

(iii) For Γ ⊂M an arithmetic subgroup,

L2(M (Q)\M (A)) may have non-trivial cus-

pidal automorphic representation.

<◦>
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List of the real simple Lie algebras of Hodge

groups:

Ar su(p, q), p + q = r + 1 and 0 ≦ p < q

sl2;

Br so(2p, 2q + 1), p + q = r;

Cr sp(p, q),∗ p + q = r and 0 ≦ p, q ≦ r

sp(2r);

Dr so(2p, 2q), p + q = r and 0 ≦ p ≦ q ≦ r

so∗(2r); ∗

E6 EII,∗ EIII; ∗

E7 EV, ∗ EVI, ∗ EVII; ∗

E8 EVIII, ∗ EIX; ∗

F4 FI, ∗ FII; ∗

G2 G. ∗

Those with ∗ were not known to be Lie algebras

of Mumford-Tate groups.
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It is harder to have a Hodge representation of

odd weight. Following is a list of the simple Lie

algebras for which there is such:

su(4k), so(4k + 2) (compact cases)

su(2p, 4k − 2p), su(2p + 1, 2q + 1)

so(4p + 2, 2q + 1), so(2p, 2q)for p + q odd

so∗(4k)

sp(n)

EV,EV II (for E7)
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D. Examples

G2: For M = G = non-compact real form of

G2, there are three distinct Hodge domains that

give a diagram

DG,ϕ3

%%
LLLLLLLLLL

yyrrrrrrrrrr

DG,ϕ1
DG,ϕ2

In his famous 1905 paper, E. Cartan classified

the 5-dimensional manifolds with aG2-invariant

exterior differential system. One is DG,ϕ1
—

the flat non-integrable 2-plane field3 — and the

other DG,ϕ2
is a contact system. The above

diagram is the Cartan-Bryant incidence cor-

respondence: In the 4-plane contact field in

3The integrals of this system are one 2-sphere rolling on another
without slipping and whose radii have the ratio 1:3.
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DG,ϕ2
there is a field F of rational normal cu-

bics. Each point of DG,ϕ1
corresponds to a

P1 in DG,ϕ2
that is tangent to F , and con-

versely. Variations of Hodge structure map-

ping to DG,ϕ1
have a “dual” variation of Hodge

structure mapping to DG,ϕ2
, and vice-versa.4

Such a pleasing picture certainly should have

algebro-geometric significance.

4The dual variations of Hodge structure should be contact curves
whose tangents are in F .
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Mumford-Tate groups of Hodge

structures of mirror quintic type

For any Hodge structure (V, ϕ) we set

Eϕ = End(V, ϕ) =

{
g : V → V,
[g, ϕ] = 0

}
5

This is an algebra over Q; if the Hodge struc-

ture is simple it is a division algebra. These are

classified. Of particular interest are those when

Eϕ is a CM-field k; i.e. k is a purely imaginary

quadratic extension of totally real number field

k0.

Definition. (V, ϕ) is a CM Hodge structure if

Eϕ is a CM-field with [k : Q] = dimV . In this

case, k∗ ∼= Mϕ is an algebraic torus over Q.

5Note that Eϕ preserves any polarization.
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Definition. (V,Q, ϕ) is a polarized Hodge struc-

ture of mirror quintic type if the weight n = 3

and the Hodge numbers

h3,0 = h2,1 = 1.

<◦>

The period domain D has dimD = 4 and the

IPR is locally an Engel system{
dy − y′dx = 0

dy′ − y′′dx = 0.

The Cattani-Kaplan-Schmid limiting mixed Hodge

structures have been classified and a “Torelli

theorem” for a mirror quintic has been proved.
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Following is a table of all possible Mumford-

Tate groups for simple such Hodge structures.

Those with a “∗” are non-classical.

type dim NLϕ Mϕ(R)0 Eϕ Gal(k/Q)
(i)∗ 4 Sp(4) Q {e}
(ii)∗ 2 SL2 × SL2 Q(

√
d) Z2

(iii) 1 U(1) × SL2 Q(
√
−d) Z2

(iv)∗ 1 U(1) × SL2 Q(
√
−d) Z2

(v) 1 SL2 Q {e}
(vi) 0 U(1) × U(1) k Z4CM

{

(vii) 0 U(1) × U(1) k Z2 × Z2

In (v) the algebra of Hodge tensors is gener-

ated in degrees 2, 4; in all other cases they are

generated in degree 2.
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In general, one should picture a period domain

as having a very rich configuration of arithmeti-

cally defined MT-sub-domains (e.g., CM polar-

ized Hodge structures are dense).
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III. Variation of Hodge structure

and the structure theorem

Let Dh = G(R)/H be a period domain and

Γ ⊂ GZ = G ∩ (AutVZ) where VZ ⊂ V is a

lattice.

Definition. A variation of Hodge structure

is given by

Φ : S → Γ\Dh

where S is a quasi-projective smooth algebraic

variety and Φ is a locally liftable holomorphic

mapping that satisfies the infinitesimal period

relation (IPR)

Φ∗(TS) ⊂ W ⊂ T (Γ\Dh).

<◦>
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We think of Φ(s) as giving

VC = ⊕V p,qs ,

defined up to the action of Γ. Then

(i) FPs = ⊕
p′≥p

V
p′,q′
s varies holomorphically with

s ∈ S.

(ii)
dFPs
ds ⊆ F

p−1
s gives W .

A family X
π−→ S of smooth projective varieties

Xs = π−1(s) gives a variation of Hodge struc-

ture where



V = Hn(Xso,Q)prim
Γ = monodromy group
F
p
s = F pHn(Xs,C).

Definition. The Mumford-Tate group MΦ of

the variation of Hodge structure is defined to

be MΦ(η) where η ∈ S is a generic point. Then

Γ ⊂MΦ(η)
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and we have

MΦ = M1 × · · · ×Mk ×M ′

∪
Γ = Γ1 × · · · × Γk.

Structure theorem: We have

Φ : S → Γ1\DM1
× · · · × Γk\DMk

×DM ′

where the DM ′ factor is constant and where

Γi(Q) = Mi.

If Γi,Z ⊂ Mi is the arithmetic group arising

from VZ, then

• Γi ⊆ Γi,Z
• the tensor invariants of Γi and Γi,Z are the

same.

Question: Is Γi of finite index in Γi,Z; i.e., is

Γ an arithmetic group?
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IV. Some open issues

Because the natural setting for variations of

Hodge structure would seem to be Hodge do-

mains, without reference to a particular Hodge

representation, a natural issue is

Extend the Cattani-Kaplan-Schmid theory

of degenerating Hodge structures, and the re-

lated Kato-Usui theory of enlargements of

Φ : S → Γ\D’s,

to the setting of Hodge domains.

The point is that since a Hodge domain will be

realized in many different ways as Mumford-Tate

sub-domains of various period domains, the C-K-S

and K-U theories will need to be recast in purely
28



algebraic group-theoretic terms.6 This could

lead to some simplification and isolation of the

essential points of the above theories.

<◦>

6For example, the index of unipotency of a local monodromy trans-
formation will be bounded by the minimal weight for a Hodge rep-
resentation of M .
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In the classical case of Shimura varieties (the

weight n = 1 case) there is an extensive and

rich theory connecting

algebraic

number theory-

L-functions

representation

theory-cuspidal
automorphic
representation

 algebraic geometry-

Hodge theory

arithmetic
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In the non-classical case, all three of these boxes

are present but, e.g. in the case of cuspidal au-

tomorphic representations, are less highly devel-

oped. Almost entirely missing are the connec-

tions — the picture is roughly7

 algebraic geometry-
Hodge theory

arithmetic

algebraic

number theory-

L-functions

representatio
n

theory-cusp
idal

automorphic

representatio
n

7The top dotted arrow assigns to a global VHS over Q L-functions
arising from the associated ℓ-adic Galois representations. The bot-
tom dotted arrow associates an L-function to a cuspidal represen-
tation. The absence of a solid top arrow means that in general the
analytic continuation and functional equation are missing.
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It is the connections between these boxes —

especially those coming from algebraic geome-

try/Hodge theory that enable the classical deep

story

number

theory

rep.

theory

Since Hodge groups are exactly those for which

one expects a theory of cuspidal automorphic
32



representations — an implausibly accidental phe-

nomenon — what is perhaps suggested is an ef-

fort to study the arithmetic aspects of global

variations of Hodge structure by connecting

representation

theory

arithmetic

Hodge

theory

A good place to start might be the mirror quin-

tic example above, or perhaps the non-classical

Hodge domain when M = SU(2, 1).
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