Mumford-Tate Groups
and
Mumford-Tate Domains

Phillip Griffiths*

*Based on joint work with Mark Green and Matt Kerr.
Talk given at AGNES, April 10, 2010

1



This talk will discuss

e What are Mumford-Tate groups and Mumford-
Tate domains”
e What are they good for?

e What is known about them?

e What would we like to know that isn’t known,

and why?
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I. Introductory material

A. Polarized Hodge structures

o V isa Q-vector space

o Sl={z=¢"} z=2"1
Any representation
() oSt — Aut(Vg)
decomposes on Vo into eigenspaces

(Vo =a@vrd, TP = yap
(k) <

\ SO(Z) — szq — 6Z<p_Q> on Vpaq

Definition. A Hodge structure of weight n is
given by (%) where p 4+ ¢ = n in (xx).
We set C'= (i) (Weil operator)
() :V®V — Q, non-degenerate and
Q= (-1"Q



Definition. A polarized Hodge structure (V,Q, )
of weight n is given by ¢ : ST — Aut(Vi, Q) as
above and where the Hodge-Riemann bilinear

relations

() QVPLVPY=0 p £n—p

(i) Q(v,Cv) > 0, 0#£veVp

are satisfied.

Polarized Hodge structures admit the usual op-

erations (@, ®,Hom) of linear algebra. They

form a semi-simple abelian category.



Hodge’s theorem: The primitive cohomol-
ogy H™(X,Q)prim of a smooth, complex pro-
jective algebraic variety has a (functorial) PHS

of weight n.



B. Mumford-Tate groups
oG = Aut(V,Q) — this is a Q-algebraic
group — note that

O sl G(R).

Definition I: The Mumjord-Tate group M,
associated to (V, @, ¢) is the smallest Q-algebraic
subgroup of G such that ¢ : ST — M(R).

<Oo>

For a PHS (W, Qy, vw) of even weight n =

2m, the Hodge classes are

ng =W nw"mm,

Hodge conjecture: Hg(H*(X,Q)) are rep-

resented by algebraic cycles

<o>



Set

/

Thi = e g V@
< T®.® _ @Tk’l

\ Hg;," — Hodge tensors in T*®

Definition II: The Mumford-Tate group MS’D
is the subgroup of Aut(V') that fixes all Hodge

tensors.

Theorem: Mgp = Mg’p.

Example: X = F; = C/Z + Z71 and V =
HYE;, Q). Then

Q(7)* if 7 is imaginary quadratic
MT —
SLo otherwise
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o M, 1s a reductive Q-algebraic group. Thus

it 1s an almost product
M=M; x- - X M;xT

where M, is simple and 7' is a torus.



C. Mumford-Tate domains

Definition. Given (V, Q) and Hodge numbers

p+q=n
the period domain

Db_{ PHS’s (V,Q, ¢) }

with dim VP4 = pP4

<o>

Given a reference point ¢ € Dy,
Dy =G(R)/H,
where H, = Z(p(S1)) is the compact isotropy
eroup fixing .
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Definition. Given ¢ € Dy with MT-group
M, the Mumjford-Tate domain

DM,gp C D[)

is the My (R)-oribit of .

<o>

~ Dy, = Mp(R)/Hyp where
Hy = Zy (9(S1).

Theorem: D), is the component through
@ of the subvariety

NL, = {¢' € Dy : Hg’” 2 Hg"}.

Classical case: m = 1 and ['\Dj; , are the

P
(complex points of) Shimura varieties.



The non-classical case (or non-Shimura vari-
ety case) is comparatively in its early stage of de-
velopment. For example, automorphic forms —
especially their arithmetic aspects — is replaced
by “automorphic cohomology”, whose possible
arithmetic and geometric meanings are a major

open 1Ssue.
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II. Hodge groups and Hodge domains
A. Hodge representations

e )M is a a reductive, linear (Q-algebraic group

Definition. A Hodge representation (M, p, ©)

is given by a (Q-vector space V' and representa-

tion /Q
p: M — Aut(V)
such that (i) there is an invariant bilinear form

Q: VeV — Qwith 'Q = (-1)"Q, and (ii)

there is
© : st M (R)

such that (V,Q,p o ) is a polarized Hodge

structure of weight n.

13



Since M is an almost direct product of sim-
ple Q-algebraic groups and an algebraic torus,1
without essential loss of generality we shall as-

sume that M is simple.

B. Hodge groups and Hodge domains

Definitions. (i) A Hodge group is an M that
admits a Hodge representation.

(ii) A Hodge domain is Dy, = M(R)/Z,
where (M, p, @) is a Hodge representation and
Zp = Zni(p(S) € M(R).

I The torus case is basically the study of CM-Hodge structures; this

is very interesting and will be briefly mentioned below.
14



Proposition: For any Hodge representation
(M, p, ¢), the corresponding Mumford-Tate do-
main is biholomorphic as a homogeneous com-
plex manifold to the Hodge domain Dy ,. More-
over, the infinitesimal period relations? corre-

spond.

<o>

Thus, we feel that Hodge groups and Hodge
domains are the basic universal objects in Hodge

theory.
C. Classification

Theorem: (i) M is a Hodge group if, and
only if, there is ¢ : S' — M(R) such that

2To be defined later. Briefly, any variation of Hodge structure
has tangent spaces contained in an invariant, canonical distribution

W C TDMM.
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(m, B, Ad ) is a polarized Hodge structure. (ii)
If M is a Hodge group, then for any p : M —
Aut(V, Q), (V,+Q, po ) is a polarized Hodge

structure.

<o>

Theorem: The following are equivalent:

(i) M is a Hodge group
(ii) M is a semi-simple Q-algebraic group such
that L?(M(R)) has non-trivial discrete se-
ries summands.
(iii) For I' € M an arithmetic subgroup,
LA(M(Q)\M(A)) may have non-trivial cus-

pidal automorphic representation.

<Oo>
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List of the real simple Lie algebras of Hodge
groups:
Ay su(p,q),p+g=r+1land 0= p<gq
slo;
B, so(2p,2q+ 1), p+q=r;

Cr sp(p,q),*p+qg=rand0 = pg=r
sp(2r);

Dy s0(2p,2q),p+q=rand0=p=<qg=r
so™(2r); *

Es EIL* EIII *

E- EV,* EVI * EVIL *
Es  EVIIL * EIX: *

Fy  FI * FIIL *

Gy G.*

Those with * were not known to be Lie algebras

of Mumford-Tate groups.



It is harder to have a Hodge representation of
odd weight. Following is a list of the simple Lie

algebras for which there is such:

su(4k), so(4k +2) (compact cases)
su(2p, 4k — 2p), su(2p + 1,2q + 1)

so(4p + 2,2q + 1), so(2p, 2q)for p + q odd
so™(4k)

sp(n)

EV,EVII (for E)
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D. Examples
Go: For M = G = non-compact real form of
(&9, there are three distinct Hodge domains that

oive a diagram

In his famous 1905 paper, E. Cartan classified
the 5-dimensional manifolds with a G9-invariant
exterior differential system. One is Dg , —
the flat non-integrable 2-plane field® — and the
other DG,gpg

diagram is the Cartan-Bryant incidence cor-

is a contact system. The above

respondence: In the 4-plane contact field in

3The integrals of this system are one 2-sphere rolling on another

without slipping and whose radii have the ratio 1:3.
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Dgq ,, there is a field £ of rational normal cu-

bics. Each point of D¢ ,, corresponds to a
1 -

P™in Dg o,

versely. Variations of Hodge structure map-

that is tangent to F', and con-

ping to D¢, have a “dual” variation of Hodge
structure mapping to DGWQ, and vice-versa.?
Such a pleasing picture certainly should have

algebro-geometric significance.

4The dual variations of Hodge structure should be contact curves

whose tangents are in F'.
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Mumford-Tate groups of Hodge

structures of mirror quintic type

For any Hodge structure (V, ) we set
g V — V7 } 5]
Eo, = End(V, p) =
p= o) = {7, 7
This is an algebra over Q; if the Hodge struc-
ture is simple it is a division algebra. These are
classified. Of particular interest are those when
Cy 1s a CM-field k; 1.e. k 1s a purely imaginary
quadratic extension of totally real number field

ko.

Definition. (V, ¢) is a CM Hodge structure if
&, is a CM-field with [k : Q] = dim V. In this

case, k* = M, is an algebraic torus over Q.

DNote that &, preserves any polarization.
21



Definition. (V, Q, ¢) is a polarized Hodge struc-
ture of marror quintic type if the weight n = 3

and the Hodge numbers
P =l =1,

<o>

The period domain D has dim D = 4 and the
IPR is locally an Engel system
dy —y'de =0
{dy’ —y'dx = 0.
The Cattani-Kaplan-Schmid limiting mixed Hodge
structures have been classified and a “Torelli

theorem” for a mirror quintic has been proved.
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Following is a table of all possible Mumford-

Tate groups for simple such Hodge structures.

Those with a “x” are non-classical.

type|dim NL,| M, (R)" &, |Gal(k/Q)

O 4 Sp(4) Q le}

(11)>|< 2 SL2 X SL2 (\/E) ZQ

(iii)| 1 U(1) x SLy |Q(v/—d)|  Zy

(iv)"| 1 U(1) x SLy |Q(v—=d)|  Zy

(v)| 1 SLo Q {e}

(vi) 0 (U1 xU) k 7y
CM{(vii) 0 |[U(1) xU(1) k Ty X Zg

In (v) the algebra of Hodge tensors is gener-

ated in degrees 2, 4: in all other cases they are

generated in degree 2.
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In general, one should picture a period domain

as having a very rich configuration of arithmeti-
cally defined MT-sub-domains (e.g., CM polar-

ized Hodge structures are dense).
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III. Variation of Hodge structure

and the structure theorem

Let Dy = G(R)/H be a period domain and
['C Gy = GN (Aut V) where Vi C V is a

lattice.

Definition. A variation of Hodge structure
is given by
where S is a quasi-projective smooth algebraic

variety and ® is a locally liftable holomorphic

mapping that satisfies the infinitesimal period

relation (IPR)
O (T'S) C W C T(I'\Dy).

<o>



We think of ®(s) as giving
Ve =aVvi,
defined up to the action of I'. Then

p !/
(i) FY = @ VI 7 varies holomorphically with
p'=p
S EPS .
(i) L € FP gives W7,
A family X = S of smooth projective varieties
X5 = m1(s) gives a variation of Hodge struc-

ture where

(V= Hn(Xsm @)prim

¢ I'= monodromy group

| FY = FPH"(X,,C).

Definition. The Mumford-Tate group Mg of

the vartation of Hodge structure is defined to

be MCD(U) where n € S is a generic point. Then
I'C M (n)
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and we have
Mg = My x -+ x My x M’
U
=T x--- %1,

Structure theorem: We have

o5 — Fl\DMl X oo X Fk\DMk X DM’
where the D factor is constant and where

[i(Q) = M;.

It T'; z C M; is the arithmetic group arising
from V7, then

ol Cliz

e the tensor invariants of I'; and I'; 7 are the

Salle.

Question: Is I'; of finite index in I'; 7; 1.e., s

[ an arithmetic group?
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IV. Some open issues
Because the natural setting for variations of
Hodge structure would seem to be Hodge do-
mains, without reference to a particular Hodge

representation, a natural issue is

FExtend the Cattani-Kaplan-Schmad theory
of degenerating Hodge structures, and the re-

lated Kato-Usui theory of enlargements of
$:. 5 —=T\D’s,
to the setting of Hodge domains.

The point is that since a Hodge domain will be
realized in many different ways as Mumford-Tate
sub-domains of various period domains, the C-K-S

and K-U theories will need to be recast in purely

28



algebraic group-theoretic terms.% This could
lead to some simplification and isolation of the

essential points of the above theories.

<o>

OFor example, the index of unipotency of a local monodromy trans-
formation will be bounded by the minimal weight for a Hodge rep-

resentation of M.
29



In the classical case of Shimura varieties (the

weight n = 1 case) there is an extensive and

rich theory connecting

representation
theory-cuspidal

automorphic
representation
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In the non-classical case, all three of these boxes
are present but, e.g. in the case of cuspidal au-
tomorphic representations, are less highly devel-
oped. Almost entirely missing are the connec-

tions — the picture is roughly7

arithmetic
algebraic geometry-

Hodge theory

The top dotted arrow assigns to a global VHS over Q L-functions
arising from the associated f-adic Galois representations. The bot-
tom dotted arrow associates an L-function to a cuspidal represen-
tation. The absence of a solid top arrow means that in general the

analytic continuation and functional equation are missing.
31



It is the connections between these boxes —
especially those coming from algebraic geome-
try/Hodge theory that enable the classical deep
story

number
theory

/

rep.
theory

Since Hodge groups are exactly those for which

one expects a theory of cuspidal automorphic



representations — an implausibly accidental phe-
nomenon — what is perhaps suggested is an et-
fort to study the arithmetic aspects of global

variations of Hodge structure by connecting

arithmetic
Hodge
theory

representation
theory

A good place to start might be the mirror quin-
tic example above, or perhaps the non-classical
Hodge domain when M = SU(2,1).
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