Math 621 Midterm review problems

Paul Hacking

March 1, 2018

The midterm exam will be held Wednesday $3 / 7 / 18,7: 00 \mathrm{PM}-8: 30 \mathrm{PM}$, in LGRT 1322. The syllabus for the midterm exam is the following sections of Stein and Shakarchi: Chapter 1, Sections 1,2,3; Chapter 2, Sections 1,2,4; Chapter 3, Sections 1,2,3.

Justify your answers carefully.
(1) Let γ be the circle with center z_{0} and radius R, oriented counterclockwise. Let $\Omega \subset \mathbb{C}$ be an open set such that γ and its interior are contained in Ω, and let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Suppose $|f(z)| \leq M$ for all $z \in \gamma$.
(a) For $n \geq 1$, give the precise statement of the Cauchy inequality for $f^{(n)}\left(z_{0}\right)$, the nth derivative of f evaluated at z_{0}.
(b) Give examples to show that the Cauchy inequality is the best possible, that is, the bound on $f^{(n)}\left(z_{0}\right)$ cannot be improved for all functions f which are holomorphic inside and on γ.
(2) Let

$$
P_{n}(z)=\sum_{k=0}^{n} \frac{z^{k}}{k!} .
$$

Given a positive real number R, prove that P_{n} has no zeros in the disc with center the origin and radius R for all n sufficiently large.
(3) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with domain \mathbb{C} such that the real part of f is bounded above. Prove that f is constant.
(4) For each of the following functions, find all isolated singular points, classify them (into removable singularities, poles, essential singularities), and find the residues at all isolated singular points.
(a)

$$
\frac{\sin z}{z(z-\pi / 2)^{2}}
$$

(b)

$$
z^{2} e^{1 /(z+1)}
$$

(c)

$$
(\cot z)^{2}
$$

(d)

$$
\frac{z^{35}}{1-z^{16}}
$$

(5) Evaluate the following integrals.
(a)

$$
\int_{-\infty}^{\infty} \frac{1}{x^{6}+1} d x
$$

(b)

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin x}{x^{4}+5 x^{2}+4} d x
$$

(c)

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{x^{2}+9 x+8} d x
$$

(6) Evaluate the integral

$$
\int_{\gamma} z^{n} e^{2 / z} d z
$$

where n is an integer and γ is a circle with center the origin, oriented counterclockwise.
(7) (a) Find the Laurent series of

$$
f(z)=\frac{2 z-1}{z(z-1)}
$$

centered at $z=0$ which is valid on the punctured disc $\{z \in \mathbb{C} \mid 0<$ $|z|<1\}$.
(b) Find all the Laurent series for $f(z)=\frac{2 z}{z^{2}-4 z+3}$ centered at $z=0$ and specify for each the largest open set over which it represents the function.
(8) Consider the Laurent series $\tan (z)=\sum_{-\infty}^{\infty} a_{n} z^{n}$ which is valid in the annulus $\left\{z \in \mathbb{C}\left|\frac{\pi}{2}<|z|<\frac{3 \pi}{2}\right\}\right.$. Using contour integrals or otherwise, determine the coefficients a_{n} with index $-\infty<n \leq-1$.
(9) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with domain \mathbb{C} and suppose that $|f(z)| \leq|\sin z|^{3}$ for all $z \in \mathbb{C}$. Prove that $f(z)=\lambda(\sin z)^{3}$ for some $\lambda \in \mathbb{C}$.
(10) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with domain \mathbb{C}. Show that if f is not a polynomial then f has an essential singularity at infinity.
(11) Let f be a meromorphic function on $\mathbb{C} \cup\{\infty\}$. For $p \in \mathbb{C} \cup\{\infty\}$ define

$$
\operatorname{ord}_{p}(f)= \begin{cases}n & \text { if } f \text { has a zero of order } n \text { at } p \\ -n & \text { if } f \text { has a pole of order } n \text { at } p \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $\sum_{p \in \mathbb{C} \cup\{\infty\}} \operatorname{ord}_{p}(f)=0$.
(12) Compute the integral

$$
\int_{\gamma} \frac{1}{(z-3)(2+3 z)^{3}(i-2 z)^{2}} d z
$$

where γ is the circle with center the origin and radius 1 oriented counter-clockwise.
[Hint: Consider the substitution $w=1 / z$]

