Math 621 Final review problems

Paul Hacking

April 30, 2018

The final exam will be held Tuesday 5/8/18, 8:00AM-10:00AM, in LGRT 1322.

Justify your answers carefully.
(1) Let $\Omega \subset \mathbb{C}$ be an open set containing the closure \bar{D} of the unit disc $D=\{z \in \mathbb{C}| | z \mid<1\}$ and $f: \Omega \rightarrow \mathbb{C}$ a holomorphic function such that $|f(z)|<1$ for z on the unit circle ∂D. Show that the equation $f(z)=z^{3}$ has 3 solutions in D counting multiplicities.
(2) Let

$$
\Omega=\{z \in \mathbb{C}| | z \mid<1, \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}
$$

be the portion of the unit disc contained in the positive quadrant and

$$
H=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

be the upper half plane. Determine explicitly a holomorphic bijection $F: \Omega \rightarrow H$.
(3) Show that if $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$is a holomorphic bijection then either $f(z)=$ $c z$ or $f(z)=c z^{-1}$, where $c \in \mathbb{C}^{\times}$is a nonzero constant. (Here $\mathbb{C}^{\times}:=$ $\mathbb{C} \backslash\{0\}$.)
(4) Let $D=\{z \in \mathbb{C}| | z \mid<1\}$ be the unit disc and

$$
S=\{z \in \mathbb{C}| | \operatorname{Re}(z)|<1,|\operatorname{Im}(z)|<1\}
$$

be the interior of the unit square. Suppose $f: D \rightarrow S$ is a holomorphic bijection such that $f(0)=0$. Prove that $f(-z)=-f(z)$.
(5) How many zeroes does the polynomial $f(z)=z^{7}-5 z^{3}+12$ have in the annulus $A=\{z \in \mathbb{C}|1<|z|<2\}$ (counting multiplicities)?
(6) Show that $f(z)=\tan (z)$ defines a holomorphic bijection from the strip $S=\{z \in \mathbb{C} \mid-\pi / 4<\operatorname{Re}(z)<\pi / 4\}$ to the unit disc $D=\{z \in$ $\mathbb{C}||z|<1\}$.
(7) Let

$$
\Omega=\{z \in \mathbb{C}| | z \mid>1, \operatorname{Im}(z)>0\}
$$

the portion of the upper half plane lying outside the closure of the unit disc, and let H be the upper half plane. Determine a holomorphic bijection $F: \Omega \rightarrow H$.
(8) Let

$$
f(z)=\sum_{n=-\infty}^{n=\infty} \frac{1}{(z-n)^{2}}
$$

(a) Show that the series defines a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$, with a double pole at each $n \in \mathbb{Z}$, such that f is even and satisfies $f(z+1)=f(z)$.
(b) Show that $g(z):=f(z)-(\pi / \sin (\pi z))^{2}$ is holomorphic on $\mathbb{C} \backslash \mathbb{Z}$ and has a removable singularity at each $n \in \mathbb{Z}$, that is, it extends to a holomorphic function $\tilde{g}: \mathbb{C} \rightarrow \mathbb{C}$.
(9) Let $f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1+z^{2 n}}$. Show that the series converges iff $|z| \neq 1$ and defines a holomorphic function on the open set $\Omega=\{z \in \mathbb{C}| | z \mid \neq 1\}$.
(10) Let $D \subset \mathbb{C}$ be the unit disc and $f: D \rightarrow \mathbb{C}$ a holomorphic function. Let $d=\sup \left\{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \mid z_{1}, z_{2} \in D\right\}$ be the diameter of the image $f(D)$ of D under f. Prove that $\left|f^{\prime}(0)\right| \leq \frac{1}{2} d$.
[Hint: Consider $g(z):=f(z)-f(-z)$.]
(11) Let Ω be the portion of the unit disc given in polar coordinates by

$$
\Omega=\left\{z=r e^{i \theta} \mid 0<r<1,0<\theta<\pi / 3\right\} .
$$

The boundary of Ω consists of the line segment L_{0} from 0 to 1 , the line segment $L_{\pi / 3}$ from 0 to $e^{\pi i / 3}$, and a curve Γ on the unit circle. Prove
that there exists a unique Möbius transformation f satisfying $f(1)=i$, $f\left(e^{\pi i / 3}\right)=0, f$ maps Γ into the imaginary line $\mathbb{R} i$, and f maps $L_{\pi / 3}$ into the real axis. Give an explicit, simple formula for $f(z)$. Justify your answer.
[Hint: Find $f^{-1}(\infty)$ first.]
(12) Prove the following more precise version of the fundamental theorem of algebra. Let

$$
f(z)=z^{n}+a_{n-1} z^{n-1}++a_{1} z+a_{0}
$$

be a monic polynomial of degree n with complex coefficients. Let A be the maximum of $\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n-1}\right|$. Then f has n roots (counting multiplicities) in the open disc with center 0 and radius $R=A+1$.
(13) Determine the number of zeroes of the function $f(z)=2 z^{2}+\sin z$ in the open unit disc $D=\{z \in \mathbb{C}| | z \mid<1\}$ and show that all the zeroes are simple.
(14) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that $g(i) \neq g(-i)$. Define domains

$$
\Omega_{1}=\{z \in \mathbb{C}| | z \mid<1\}
$$

and

$$
\Omega_{2}=\{z \in \mathbb{C}| | z \mid>1\} .
$$

(a) Does there exist a holomorphic function $f: \Omega_{1} \rightarrow \mathbb{C}$ such that $f^{\prime}(z)=\frac{g(z)}{z^{2}+1}$?
(b) Does there exist a holomorphic function $f: \Omega_{2} \rightarrow \mathbb{C}$ such that $f^{\prime}(z)=\frac{g(z)}{z^{2}+1}$?
(15) Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z^{5}+e^{z}+4$. Let

$$
\Omega=\{z \in \mathbb{C} \mid \operatorname{Re}(z)<0\}
$$

be the left half plane. Show that f has exactly 3 zeroes in Ω (counting multiplicities).
(16) Let Ω be a simply connected open subset of the complex plane. Show that for any two points $z_{1}, z_{2} \in \Omega$ there exists a holomorphic bijection $F: \Omega \rightarrow \Omega$ such that $F\left(z_{1}\right)=z_{2}$.
(17) Let $\Omega=\{z \in \mathbb{C}| | z-1 \mid>2\}$ and consider the holomorphic function f : $\Omega \rightarrow \mathbb{C}, f(z)=\frac{\cos (\pi z)}{z(z-2)}$. Show carefully that there exists a holomorphic function $g: \Omega \rightarrow \mathbb{C}$ such that $g^{\prime}=f$.
(18) (a) Find the number of solutions (counting multiplicities) of the equation $z^{4}-6 z+3=0$ in the annulus $A=\{z \in \mathbb{C}|1<|z|<2\}$.
(b) Show that the multiplicity of each solution in part (a) is equal to 1.
(19) (a) Determine the number of zeroes of the polynomial

$$
p(z)=z^{5}-z^{4}+2 z^{3}-3 z^{2}-5
$$

in the disc $\{z \in \mathbb{C}||z|<3\}$.
(b) Evaluate the integral

$$
\int_{C} \frac{z^{4}-2 z^{2}+z-3}{z^{5}-z^{4}+2 z^{3}-3 z^{2}-5} d z,
$$

where C is the boundary of the disc from part (a) with the counterclockwise orientation.
(20) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant holomorphic function. Show that the image of f is dense in the complex plane.
(21) Let f be a holomorphic function on the unit disc $D=\{z \in \mathbb{C}| | z \mid<1\}$, such that $|f(z)|<1$ for all $z \in D$ and $f(0)=0$. Show that the series $g(z):=\sum_{n=0}^{\infty} f\left(z^{n}\right)$ defines a holomorphic function on D.
(22) Find a function u, harmonic and bounded on the domain

$$
\Omega=\{z \in \mathbb{C}| | z \mid<1, \operatorname{Im}(z)>0\},
$$

with the following boundary values:
(a) $u=0$ on $\{z \in \mathbb{C}||z|<1, \operatorname{Im}(z)=0\}$, and
(b) $u=1$ on $\{z \in \mathbb{C}||z|=1, \operatorname{Im}(z)>0\}$.
(23) (a) Let H be the upper half plane. Describe a function $u_{1}: \bar{H} \rightarrow \mathbb{R}$ such that u is harmonic on H, continuous on \bar{H}, and $\left.u\right|_{\partial H}=0$.
(b) Let D be the unit disc. Using part (a) or otherwise, describe a function $u_{2}: \bar{D} \backslash\{-1\} \rightarrow \mathbb{R}$ such that u is harmonic on D, continuous on $\bar{D} \backslash\{-1\}$, and $\left.u\right|_{\partial D \backslash\{-1\}}=0$.
[Remark: These functions do not contradict the uniqueness statement of the generalized Dirichlet problem because they are not bounded.]

