Math 461 Final review problems

Paul Hacking

December 7, 2018
(1) Let $P=\frac{1}{3}(1,2,2) \in S^{2}$ and $Q=\frac{1}{9}(4,4,7) \in S^{2}$. Find the length of the shortest path on the sphere S^{2} from P to Q.
(2) Let $P=\frac{1}{3}(2,2,1) \in S^{2}$ and $Q=\frac{1}{7}(2,3,6) \in S^{2}$. Find the equation of the spherical line through P and Q.
(3) Let $L \subset S^{2}$ be the spherical line with equation $x+y+2 z=0$ and $M \subset S^{2}$ the spherical line with equation $x+2 y+3 z=0$.
(a) Find the two points of intersection of L and M.
(b) Find the angle between L and M.
(c) L and M divide the sphere into 4 regions. What are the areas of the regions?
(4) Let $P=\frac{1}{3}(2,1,2) \in S^{2}$ and let $L \subset S^{2}$ be the spherical line with equation $x+2 y+3 z=0$. Find the equation of the spherical line M such that $P \in M$ and M is perpendicular to L.
(5) For a spherical triangle, suppose that two sides have equal lengths. Show that the two angles opposite the sides are equal.
[Hint: What is the spherical cosine rule?]
(6) Let T be the spherical triangle on S^{2} with vertices $A=(1,0,0), B=$ $\frac{1}{\sqrt{2}}(0,1,1)$, and $C=(0,0,1)$.
(a) Compute the equations of the spherical lines given by the sides of T.
(b) Compute the angles of T. (You may assume that each angle of T is less than or equal to $\pi / 2$ radians.)
(c) Deduce the area of T.
(7) (a) Suppose the sphere S^{2} is tiled by congruent spherical triangles with angles $\pi / 3, \pi / 3$ and $2 \pi / 5$. How many triangles are there in the tiling?
(b) Suppose the sphere S^{2} is tiled by 20 congruent spherical equilateral triangles. What are the angles of the triangles?
(8) Find the spherical center, spherical radius, and circumference of the spherical circle $C=\Pi \cap S^{2}$, where $\Pi \subset \mathbb{R}^{3}$ is the plane with equation $3 x+4 y+5 z=6$.
(9) Use the Gall-Peters projection (HW8Q7) to show that the area of a spherical disc of spherical radius r equals $2 \pi(1-\cos r)$.
(10) Find an algebraic formula for the reflection $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ in the plane Π with equation $x+2 y+2 z=0$.
(11) Find an algebraic formula for the rotation about the y-axis through angle θ in the counterclockwise direction as viewed from the point $(0,1,0)$ looking towards the origin.
(12) For each of the following orthogonal matrices A, classify the isometry $T(\mathbf{x})=A \mathbf{x}$ of \mathbb{R}^{3} as either the identity, a reflection in a plane through the origin, a rotation about an axis through the origin, or a rotary reflection (a reflection in a plane through the origin followed by a rotation about the axis through the origin perpendicular to the plane). Give a precise geometric description in each case: for a reflection, give the plane of reflection; for a rotation, give the axis and angle of rotation; for a rotary reflection, give the plane of reflection and angle and axis of rotation (you may omit the sense (counter-clockwise or clockwise) of rotation in the case of a rotation or rotary reflection).
(a) $A=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
(b) $A=\frac{1}{3}\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1\end{array}\right)$.
(c) $A=\frac{1}{11}\left(\begin{array}{ccc}9 & -6 & -2 \\ -6 & -7 & -6 \\ -2 & -6 & 9\end{array}\right)$.
(13) Compute the composition of a rotation about the x-axis through $\pi / 2$ counterclockwise (as viewed from $(1,0,0)$ looking towards the origin) followed by a rotation about the z-axis through $\pi / 2$ counterclockwise (as viewed from $(0,0,1)$ looking towards the origin). (Give a precise geometric description of the composition.)
(14) Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection in the plane Π_{1} with equation $x+y+z=0$ and let $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection in the plane Π_{2} with equation $x+2 y+3 z=0$. What is the composition $T=T_{2} \circ T_{1}$? (Give a precise geometric description.)
(15) Recall the stereographic projection $F: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ given by the algebraic formula

$$
F(x, y, z)=\frac{1}{1-z}(x, y)
$$

with inverse $F^{-1}: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{N\}$ given by

$$
F^{-1}(u, v)=\frac{1}{u^{2}+v^{2}+1}\left(2 u, 2 v, u^{2}+v^{2}-1\right)
$$

For each of the following planes Π, find the image of the spherical circle $C=\Pi \cap S^{2}$ under stereographic projection. (The image is either a line or a circle in the $u v$-plane. In the case of a line give its equation in the form $v=m u+c$, in the case of a circle give its center and radius.)
(a) $3 x+5 y+7 z=7$.
(b) $x+3 y+z=2$.
(16) (a) What are the images of the spherical lines that pass through the antipodal points $(0,1,0)$ and $(0,-1,0)$ under stereographic projection?
(b) What are the images of the spherical circles with center the point $(0,1,0)$ or $(0,-1,0)$ under stereographic projection.
(c) Check that the curves from parts (a) and (b) meet at right angles.

