Math 461 Midterm review problems

> Paul Hacking October 21, 2018
(1) A rhombus is a 4-sided polygon such that all the sides have the same length.
(a) Prove that the diagonals of a rhombus meet at right angles.
(b) Prove that the opposite sides of a rhombus are parallel.
(2) Let $\triangle A B C$ be a triangle such that $\angle A C B=\pi / 2$. Let L be the line through C perpendicular to $A B$. Let
D be the intersection point of L and
$A B$. Prove that $|A D| \cdot|D B|=|C D|^{2}$.
(3) Let A, B, C, D be points on a circle and suppose that the chords $A B$ and $C D$ meet at a point P inside the circle. Prove that $|A P||B P|=$ $|C P||D P|$.
(4) Suppose given a circle \mathcal{C}. Give a ruler and compass construction of a rectangle $A B C D$ such that the vertices A, B, C, D lie on the circle and the angle between the diagonals is $\pi / 6$.
[Note: For this problem and the other ruler and compass problems below, you may use the ruler and compass constructions described in class and in the text book (perpendicular bisector of a line segment, angle bisector, etc.) as components of your construction.]
(5) Suppose given a circle \mathcal{C}. Give a ruler and compass construction of an isosceles right-angled triangle $\triangle A B C$ such that the sides are tangent to the circle.
(6) Suppose given an angle θ and two lengths l and h. Give a ruler and compass construction of a triangle $A B C$ with $\angle C A B=\theta,|B C|=l$, and perpendicular height h from A to $B C$. (Here we assume that $\tan (\theta / 2) \leq$ $l / 2 h$, otherwise such a triangle does not exist (why?).)
[Hint: First construct a triangle $A^{\prime} B C$ with $\angle C A^{\prime} B=\theta$ and $|B C|=l$. What is the locus of points A such that $\angle C A B=\theta$?]
(7) Find the intersection points of the circle with center the origin and radius 3 and the circle with center $(1,2)$ and radius 2 .
(8) Find the center and radius of the circle passing through the points $A=$ $(0,0), B=(1,2)$, and $C=(-1,3)$.
(9) Show that the locus of points in the plane equidistant from a line L and a point P not on L is a parabola.
[Hint: Without loss of generality, we can choose coordinates such that the line L is the x-axis and the point P has coordinates $(0, b)$ for some $b \neq$ 0.$]$
(10) Suppose given a triangle $\triangle A B C$ such that $\angle A B C$ and $\angle B A C$ are acute
(less than $\pi / 2$). What is the maximum area of a rectangle $D E F G$ with base $D E$ on the side $A B$, vertex F on the side $B C$, and vertex G on the side $C A$?
(11) Let L be a line in \mathbb{R}^{2}. Recall that Refl $_{L}$ denotes reflection in the line L, an isometry of \mathbb{R}^{2}.
Let P, Q be two points in \mathbb{R}^{2} on the same side as L. Suppose we place a mirror on the line L (standing vertically, perpendicular to the plane), with the silvered side pointing towards P and Q. Show that the perceived position of P for an observer at Q looking in the mirror is $\operatorname{Refl}_{L}(P)$. (In other words, light from the object at P reflected in the mirror travels the
same distance to Q and arrives in the same direction as light from an object at $\operatorname{Refl}_{L}(P)$ when the mirror is removed.)
[Hint: For reflection of light rays in a mirror, the incoming ray makes the same angle with the mirror as the outgoing ray ("angle of incidence equals angle of reflection").]
(12) Give a precise geometric description for each of the following isometries $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as a translation, rotation, reflection, or glide reflection.
(a) $T(x, y)=(x+5, y+7)$.
(b) $T(x, y)=(1-y, 3-x)$.
(c) $T(x, y)=(y+2,8-x)$.
(d) $T(x, y)=\frac{1}{13}(5 x+12 y+4,12 x-$

$$
5 y-6)
$$

(13) Give an algebraic formula for the rotation about the point $(4,2)$ through angle $\pi / 4$ radians counterclockwise.
(14)(a) Let L be a line through the origin in \mathbb{R}^{2}. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection in L. Let \mathbf{n} be a vector perpendicular to L. Show that T is given by the formula

$$
T(\mathbf{x})=\mathbf{x}-2\left(\frac{\mathbf{x} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}
$$

[Hint: Here $\mathbf{u} \cdot \mathbf{v}$ is the dot product, defined by $\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right)=$ $u_{1} v_{1}+u_{2} v_{2}$. In particular $\mathbf{u} \cdot \mathbf{u}=$ $\|\mathbf{u}\|^{2}$, where $\|\mathbf{u}\|$ is the length of the vector \mathbf{u}. Recall that we have the formula

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where θ is the angle between the vectors \mathbf{u} and \mathbf{v}.]
(b) Find an algebraic formula for the reflection in the line $y=3 x$.
(c) Find an algebraic formula for the reflection in the line $y=3 x+1$.
(15) Give a precise geometric description for each of the following isometries as a translation, rotation, reflection, or glide reflection.
(a) The composition of reflection in the line $x=3$ followed by reflection in the line $y=\sqrt{3} x$.
(b) The composition of reflection in the line $y=2 x+1$ followed by reflection in the line $y=2 x+5$.
(c) The composition of rotation about
the point $(1,1)$ through angle $\pi / 2$ counterclockwise followed by rotation about the point $(2,2)$ through angle $\pi / 2$ counterclockwise.
(d) The composition of rotation about the point $(3,2)$ through angle $\pi / 3$ counterclockwise followed by translation by $(4,0)$
(16) Let L and M be two distinct lines in the plane. Show that $\operatorname{Refl}_{M} \circ \operatorname{Refl}_{L}=$ $\operatorname{Refl}_{L} \circ \operatorname{Refl}_{M}$ iff L and M are perpendicular.
(17) Recall that $\operatorname{Rot}(P, \theta)$ denotes rotation about a point P through angle θ counterclockwise. Let $A B C D$ be a square such that the vertices A, B, C, D are in counterclockwise order. Determine the composition
$\operatorname{Rot}(A, \pi / 2) \circ \operatorname{Rot}(B, \pi / 2) \circ \operatorname{Rot}(C, \pi / 2) \circ$ $\operatorname{Rot}(D, \pi / 2)$.
Justify your answer carefully.
(18) Express the isometry $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+6,4-y)$ as a composite of at most 3 reflections.
(19) Let $A=(0,0), B=(1,0), C=(0,2)$, and $A^{\prime}=(3,5), B^{\prime}=(3,4), C^{\prime}=$ $(1,5)$. Find an isometry T sending $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$. (Give a geometric description and an explicit algebraic formula.)

