411 Midterm 2 Review Questions

Paul Hacking

November 10, 2011

(1) Recall that the *symmetric group* S_n is the group of permutations of the set $\{1, 2, ..., n\}$, with operation given by composition of functions. Let $\sigma \in S_8$ be the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 1 & 8 & 3 & 7 & 4 & 2 \end{pmatrix}.$$

- (a) Express σ as a product of disjoint cycles.
- (b) What is the order of σ ?
- (c) Is σ even or odd?
- (d) Express σ as a product of transpositions.
- (2) Repeat Q1 for the permutation $\sigma \in S_9$ given by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 3 & 6 & 9 & 2 & 1 & 5 & 4 \end{pmatrix}.$$

- (3) Let $\sigma \in S_n$ be a permutation. Then we can write σ as a product $\sigma = \tau_1 \tau_2 \cdots \tau_r$ of some number r of disjoint cycles τ_1, \ldots, τ_r . Let l_i be the length of the cycle τ_i for $i = 1, \ldots, r$.
 - (a) What is the order of σ ?
 - (b) Show that σ can be written as a product of $(l_1 1) + (l_2 1) + \cdots + (l_r 1)$ transpositions.
- (4) Give the definition of even and odd permutations. Define the alternating group A_n . What is the order of S_n ? What is the order of A_n ?

- (5) Let H be the subgroup $\langle (13) \rangle = \{e, (13)\}$ of S_3 . Find the left cosets of H in S_3 and the right cosets of H in S_3 . Are the left cosets the same as the right cosets?
- (6) (a) List the elements of A_4 .
 - (b) Let H be the cyclic subgroup of A_4 generated by the 3-cycle (123). Find the left cosets of H in A_4 . Are the left cosets the same as the right cosets?
- (7) Recall that for a subgroup H of a group G, the *index* of H in G is the number of left cosets of H in G. Let $G = \mathbb{Z} \times \mathbb{Z}$ and let H be the subgroup of G consisting of pairs (a, b) such that a + b is divisible by 3. What is the index of H in G?
- (8) (a) State Lagrange's theorem.
 - (b) Let G be a finite group such that |G| is prime. Show that G is cyclic.
- (9) Find all abelian groups of order 600 up to isomorphism.
- (10) Determine whether the groups $\mathbb{Z}_{24} \times \mathbb{Z}_{90} \times \mathbb{Z}_{100}$ and $\mathbb{Z}_{36} \times \mathbb{Z}_{40} \times \mathbb{Z}_{150}$ are isomorphic.
- (11) Compute the order of the element $(3,4,5) \in \mathbb{Z}_{12} \times \mathbb{Z}_{10} \times \mathbb{Z}_{13}$.
- (12) Let p be a prime. How many elements of order p are there in \mathbb{Z}_{p^2} ? How many elements of order p are there in $\mathbb{Z}_p \times \mathbb{Z}_p$?
- (13) For $n \geq 3$ the dihedral group D_n is the group of symmetries of a regular n-gon (a polygon with n sides of equal length).
 - (a) What is the order of D_n ?
 - (b) Let $\rho \in D_n$ be the rotation about the center p of the polygon through an angle $\theta = 2\pi/n$ anticlockwise. Let $\mu \in D_n$ be a reflection. Express all the elements of D_n in terms of ρ and μ . [Hint: What are the cosets of $H = \langle \rho \rangle$ in D_n ?]
- (14) Show that D_6 is isomorphic to the subgroup of the symmetric group S_6 generated by the elements (123456) and (26)(35). [Hint: label the vertices of the hexagon by 1, 2, 3, 4, 5, 6.] Use this to prove that $\mu\rho =$

- $\rho^{-1}\mu$ in D_6 where μ and ρ are defined as above. [This was proved in class for D_n by another method.]
- (15) (a) Show that every proper subgroup of the dihedral group D_7 is cyclic.
 - (b) Give an example of a proper subgroup of D_4 that is not cyclic.
- (16) What is the maximum possible order of an element of the following groups?
 - (a) \mathbb{Z}_n .
 - (b) $\mathbb{Z}_{12} \times \mathbb{Z}_{15} \times \mathbb{Z}_{63}$.
 - (c) S_9
 - (d) A_9
 - (e) D_9
- (17) Let G_1 and G_2 be groups. Show carefully that $G_1 \times G_2$ and $G_2 \times G_1$ are isomorphic.
- (18) Let G be a finite group such that $a^2 = e$ for every $a \in G$.
 - (a) Show that G is abelian
 - (b) Show that G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ (where there are some number s of copies of \mathbb{Z}_2).
- (19) Let G_1 and G_2 be groups. Show that if $G_1 \times G_2$ is cyclic then both G_1 and G_2 are finite cyclic groups and their orders are coprime.