411 Midterm 2 Review Questions

Paul Hacking

November 10, 2011
(1) Recall that the symmetric group S_{n} is the group of permutations of the set $\{1,2, \ldots, n\}$, with operation given by composition of functions. Let $\sigma \in S_{8}$ be the permutation

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 6 & 1 & 8 & 3 & 7 & 4 & 2
\end{array}\right) .
$$

(a) Express σ as a product of disjoint cycles.
(b) What is the order of σ ?
(c) Is σ even or odd?
(d) Express σ as a product of transpositions.
(2) Repeat Q1 for the permutation $\sigma \in S_{9}$ given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 8 & 3 & 6 & 9 & 2 & 1 & 5 & 4
\end{array}\right) .
$$

(3) Let $\sigma \in S_{n}$ be a permutation. Then we can write σ as a product $\sigma=\tau_{1} \tau_{2} \cdots \tau_{r}$ of some number r of disjoint cycles $\tau_{1}, \ldots, \tau_{r}$. Let l_{i} be the length of the cycle τ_{i} for $i=1, \ldots, r$.
(a) What is the order of σ ?
(b) Show that σ can be written as a product of $\left(l_{1}-1\right)+\left(l_{2}-1\right)+$ $\cdots+\left(l_{r}-1\right)$ transpositions.
(4) Give the definition of even and odd permutations. Define the alternating group A_{n}. What is the order of S_{n} ? What is the order of A_{n} ?
(5) Let H be the subgroup $\langle(13)\rangle=\{e,(13)\}$ of S_{3}. Find the left cosets of H in S_{3} and the right cosets of H in S_{3}. Are the left cosets the same as the right cosets?
(6) (a) List the elements of A_{4}.
(b) Let H be the cyclic subgroup of A_{4} generated by the 3 -cycle (123). Find the left cosets of H in A_{4}. Are the left cosets the same as the right cosets?
(7) Recall that for a subgroup H of a group G, the index of H in G is the number of left cosets of H in G. Let $G=\mathbb{Z} \times \mathbb{Z}$ and let H be the subgroup of G consisting of pairs (a, b) such that $a+b$ is divisible by 3. What is the index of H in G ?
(8) (a) State Lagrange's theorem.
(b) Let G be a finite group such that $|G|$ is prime. Show that G is cyclic.
(9) Find all abelian groups of order 600 up to isomorphism.
(10) Determine whether the groups $\mathbb{Z}_{24} \times \mathbb{Z}_{90} \times \mathbb{Z}_{100}$ and $\mathbb{Z}_{36} \times \mathbb{Z}_{40} \times \mathbb{Z}_{150}$ are isomorphic.
(11) Compute the order of the element $(3,4,5) \in \mathbb{Z}_{12} \times \mathbb{Z}_{10} \times \mathbb{Z}_{13}$.
(12) Let p be a prime. How many elements of order p are there in $\mathbb{Z}_{p^{2}}$? How many elements of order p are there in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$?
(13) For $n \geq 3$ the dihedral group D_{n} is the group of symmetries of a regular n-gon (a polygon with n sides of equal length).
(a) What is the order of D_{n} ?
(b) Let $\rho \in D_{n}$ be the rotation about the center p of the polygon through an angle $\theta=2 \pi / n$ anticlockwise. Let $\mu \in D_{n}$ be a reflection. Express all the elements of D_{n} in terms of ρ and μ. [Hint: What are the cosets of $H=\langle\rho\rangle$ in D_{n} ?]
(14) Show that D_{6} is isomorphic to the subgroup of the symmetric group S_{6} generated by the elements (123456) and (26)(35). [Hint: label the vertices of the hexagon by $1,2,3,4,5,6$.] Use this to prove that $\mu \rho=$
$\rho^{-1} \mu$ in D_{6} where μ and ρ are defined as above. [This was proved in class for D_{n} by another method.]
(15) (a) Show that every proper subgroup of the dihedral group D_{7} is cyclic.
(b) Give an example of a proper subgroup of D_{4} that is not cyclic.
(16) What is the maximum possible order of an element of the following groups?
(a) \mathbb{Z}_{n}.
(b) $\mathbb{Z}_{12} \times \mathbb{Z}_{15} \times \mathbb{Z}_{63}$.
(c) S_{9}
(d) A_{9}
(e) D_{9}
(17) Let G_{1} and G_{2} be groups. Show carefully that $G_{1} \times G_{2}$ and $G_{2} \times G_{1}$ are isomorphic.
(18) Let G be a finite group such that $a^{2}=e$ for every $a \in G$.
(a) Show that G is abelian
(b) Show that G is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ (where there are some number s of copies of \mathbb{Z}_{2}).
(19) Let G_{1} and G_{2} be groups. Show that if $G_{1} \times G_{2}$ is cyclic then both G_{1} and G_{2} are finite cyclic groups and their orders are coprime.

