Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 7 questions for a total of 75 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely.

Q1. (10 points) Let $\sigma \in S_{9}$ be the permutation

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 8 & 7 & 2 & 3 & 9 & 1 & 4 & 6
\end{array}\right)
$$

(a) (2 points) Write σ as a product of disjoint cycles.
(b) (2 points) What is the order of σ ?
(c) (2 points) Write σ as a product of transpositions.
(d) (4 points) Compute σ^{100}.

Q2. (8 points)
(a) (3 points) Find an element of S_{5} of order 6 or prove that no such element exists.
(b) (5 points) Find an element of S_{6} of order 7 or prove that no such element exists.

Q3. (12 points)
(a) (4 points) List all the elements of the alternating group A_{4}.
(b) (8 points) Find the left cosets of the subgroup H of A_{4} given by

$$
H=\{e,(12)(34),(13)(24),(14)(23)\} .
$$

Q4. (10 points)
(a) (3 points) State Lagrange's theorem.
(b) (7 points) Let p be a prime, $p \geq 3$. Let D_{p} be the dihedral group of symmetries of a regular p-gon (a polygon with p sides of equal length). What are the possible orders of subgroups of D_{p} ? Give an example in each case.

Q5. (13 points)
(a) (3 points) State a theorem which describes all finitely generated abelian groups.
(b) (5 points) List all abelian groups of order 108 up to isomorphism.
(c) (5 points) Determine whether the groups $\mathbb{Z}_{20} \times \mathbb{Z}_{24} \times \mathbb{Z}_{75}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{40} \times \mathbb{Z}_{300}$ are isomorphic.

Q6. (10 points) Consider the symmetric group S_{n}.
(a) (2 points) Let i, j, k be distinct elements of $\{1,2, \ldots, n\}$. Show that the product $(i j)(i k)$ is a 3 -cycle (a cycle of length 3).
(b) (4 points) Let i, j, k, l be distinct elements of $\{1,2, \ldots, n\}$. Show that the product $(i j)(k l)$ can be written as a product of two 3 -cycles. [Hint: $(i j)(k l)$ can be rewritten as $(i j)(i k)^{2}(k l)$.]
(c) (4 points) Show that every even permutation $\sigma \in A_{n}$ can be written as a product of 3-cycles.

Q7. (12 points) Let $H=\langle\sigma, \tau\rangle$ be the subgroup of S_{6} generated by $\sigma=$ (1234) and $\tau=(56)$. (That is, H is the smallest subgroup of S_{6} containing σ and τ.)
(a) (4 points) List the elements of H.
(b) (4 points) Show that H is abelian.
(c) (4 points) Describe an isomorphism $\phi: G \rightarrow H$ where G is a direct product of cyclic groups (to be determined).

