411 Midterm 1 Review Questions

Paul Hacking

October 12, 2011
(1) Give the definition of a group G.
(2) Suppose G is a group and x, y, z, w are elements of G satisfying the equation $x y z^{-1} w=e$. Solve for y.
(3) In each of the following cases, determine whether the given set with binary operation is a group. Explain.
(a) The set $S=\{x \in \mathbb{Z} \mid x \geq 0\}$ with operation given by addition.
(b) The set of all real 2×2 matrices with operation matrix multiplication.
(c) The set

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}
$$

with operation given by matrix multiplication.
(d) The set $S=\mathbb{R} \backslash\{-1\}$ of all real numbers except -1 with operation * defined by $a * b=a b+a+b$.
(e) The set of continuous functions $f:[0,1] \rightarrow[0,1]$ such that $f(0)=$ $0, f(1)=1$, and f is increasing (that is, $f(a)<f(b)$ for $a<b$), with operation given by composition of functions.
(4) Let G be the set $\{1,2,3,4,5,6\}$ with binary operation $*$ given by the
table below. Is G a group? Explain.

$*$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	1	4	3	6	5
3	3	5	1	6	4	2
4	4	6	5	1	2	3
5	5	3	6	2	1	4
6	6	4	2	5	3	1

(5) Let G and G^{\prime} be groups. Give the definition of an isomorphism $\phi: G \rightarrow$ G^{\prime}.
(6) Let $\phi: G \rightarrow G^{\prime}$ be an isomorphism of groups. Show that $\phi^{-1}: G^{\prime} \rightarrow G$ is an isomorphism.
(7) Let G be a group and $\phi: G \rightarrow G$ the function defined by $\phi(a)=a^{-1}$. Is ϕ an isomorphism? Explain.
(8) For each of the groups G defined in Q3(c) and Q3(d), describe an isomorphism $\phi: G \rightarrow G^{\prime}$ where G^{\prime} is a well-known group.
(9) Give the definition of a subgroup H of a group G.
(10) List all the subgroups of the following groups.
(a) $(\mathbb{Z},+)$.
(b) $\left(\mathbb{Z}_{18},+\right)$.
(c) $\left(\mathbb{Z}_{n},+\right)$, where $n \in \mathbb{Z}^{+}$is a positive integer.
(d) The group $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ with operation vector addition modulo 2 . (This group is sometimes called the Klein 4-group.)
(e) The group G of symmetries of an equilateral triangle.
(11) In each of the following cases, determine whether the given subset H of the group G is a subgroup. Explain.
(a) Let G be the group of symmetries of an equilateral triangle and H the subset of reflections.
(b) Let

$$
G=\mathrm{GL}_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, \quad a d-b c \neq 0\right\}
$$

be the group of 2×2 invertible matrices with operation given by matrix multiplication. Let H be the subset of G given by

$$
H=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, \quad a \neq 0\right\} .
$$

(c) Let $G=\mathbb{C}^{\times}$be the group of nonzero complex numbers with operation given by multiplication of complex numbers. Let H be the subset of G given by

$$
H=\{z \in \mathbb{C}| | z \mid=1\} .
$$

(d) Let $G=\mathrm{GL}_{2}(\mathbb{R})$ and let H be the subset of G given by matrices having determinant +1 or -1 , that is,

$$
H=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, \quad a d-b c= \pm 1\right\} .
$$

(12) Let H and K be subgroups of a group G. Show that the intersection $H \cap K$ is a subgroup of G.
(13) Prove or give a counterexample: If H and K are subgroups of a group G then the union $H \cup K$ is a subgroup of G.
(14) Give the definition of a cyclic group. (Make sure you understand the multiplicative notation a^{n} and additive notation $n \cdot a$ for a an element of a group G and $n \in \mathbb{Z}$.)
(15) Let $U_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ denote the group of nth roots of unity, with operation given by multiplication of complex numbers. Show that U_{n} is a cyclic group of order n and identify a generator.
(16) Which of the following groups are cyclic? Explain.
(a) $(\mathbb{Z},+)$.
(b) The group $\mathbb{Z}_{7}^{\times}=\{1,2,3,4,5,6\}$ with operation multiplication modulo 7.
(c) The group

$$
H=\left\{\left.\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}
$$

with operation given by matrix multiplication.
(d) The Klein 4 -group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(e) The group G of symmetries of an equilateral triangle.
(17) List all the generators of the cyclic group $\left(\mathbb{Z}_{20},+\right)$. What are the generators of $\left(\mathbb{Z}_{n},+\right)$ for $n \in \mathbb{Z}^{+}$?
(18) List all the generators of U_{6}. List all the subgroups of U_{6}.
(19) Give the definition of the order of an element a of a group G.
(20) Let G be a group and $a \in G$ an element of order $n \in \mathbb{Z}^{+}$. What is the order of a^{m} for $m \in \mathbb{Z}^{+}$?
(21) Let G be a group and $a, b \in G$ elements of G. Show that the order of $b a b^{-1}$ is equal to the order of a.
(22) Give the definition of the cyclic subgroup $H=\langle a\rangle$ of a group G generated by an element a. Explain why the order of the group $\langle a\rangle$ is equal to the order of the element a.
(23) Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the group of real 2×2 invertible matrices with operation given by matrix multiplication. Compute explicitly the cyclic subgroup of G generated by the element $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$.

