411 Midterm 1 Review Questions

Paul Hacking

October 12, 2011

- (1) Give the definition of a group G.
- (2) Suppose G is a group and x, y, z, w are elements of G satisfying the equation $xyz^{-1}w = e$. Solve for y.
- (3) In each of the following cases, determine whether the given set with binary operation is a group. Explain.
 - (a) The set $S = \{x \in \mathbb{Z} \mid x \geq 0\}$ with operation given by addition.
 - (b) The set of all real 2×2 matrices with operation matrix multiplication.
 - (c) The set

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

with operation given by matrix multiplication.

- (d) The set $S = \mathbb{R} \setminus \{-1\}$ of all real numbers except -1 with operation * defined by a * b = ab + a + b.
- (e) The set of continuous functions $f: [0,1] \to [0,1]$ such that f(0) = 0, f(1) = 1, and f is increasing (that is, f(a) < f(b) for a < b), with operation given by composition of functions.
- (4) Let G be the set $\{1,2,3,4,5,6\}$ with binary operation * given by the

table below. Is G a group? Explain.

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	1	4	3	6	5
3	3	5	1	6	4	2
4	4	6	5	1	2	3
5	5	2 1 5 6 3 4	6	2	1	4
6	6	4	2	5	3	1

- (5) Let G and G' be groups. Give the definition of an isomorphism $\phi \colon G \to G'$.
- (6) Let $\phi: G \to G'$ be an isomorphism of groups. Show that $\phi^{-1}: G' \to G$ is an isomorphism.
- (7) Let G be a group and $\phi \colon G \to G$ the function defined by $\phi(a) = a^{-1}$. Is ϕ an isomorphism? Explain.
- (8) For each of the groups G defined in Q3(c) and Q3(d), describe an isomorphism $\phi: G \to G'$ where G' is a well-known group.
- (9) Give the definition of a subgroup H of a group G.
- (10) List all the subgroups of the following groups.
 - (a) $(\mathbb{Z}, +)$.
 - (b) $(\mathbb{Z}_{18}, +)$.
 - (c) $(\mathbb{Z}_n, +)$, where $n \in \mathbb{Z}^+$ is a positive integer.
 - (d) The group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (1,0), (0,1), (1,1)\}$ with operation vector addition modulo 2. (This group is sometimes called the *Klein 4-group*.)
 - (e) The group G of symmetries of an equilateral triangle.
- (11) In each of the following cases, determine whether the given subset H of the group G is a subgroup. Explain.
 - (a) Let G be the group of symmetries of an equilateral triangle and H the subset of reflections.

(b) Let

$$G = GL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R}, \quad ad - bc \neq 0 \right\}$$

be the group of 2×2 invertible matrices with operation given by matrix multiplication. Let H be the subset of G given by

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{R}, \quad a \neq 0 \right\}.$$

(c) Let $G = \mathbb{C}^{\times}$ be the group of nonzero complex numbers with operation given by multiplication of complex numbers. Let H be the subset of G given by

$$H = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

(d) Let $G = GL_2(\mathbb{R})$ and let H be the subset of G given by matrices having determinant +1 or -1, that is,

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R}, \quad ad - bc = \pm 1 \right\}.$$

- (12) Let H and K be subgroups of a group G. Show that the intersection $H \cap K$ is a subgroup of G.
- (13) Prove or give a counterexample: If H and K are subgroups of a group G then the union $H \cup K$ is a subgroup of G.
- (14) Give the definition of a cyclic group. (Make sure you understand the multiplicative notation a^n and additive notation $n \cdot a$ for a an element of a group G and $n \in \mathbb{Z}$.)
- (15) Let $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ denote the group of nth roots of unity, with operation given by multiplication of complex numbers. Show that U_n is a cyclic group of order n and identify a generator.
- (16) Which of the following groups are cyclic? Explain.
 - (a) $(\mathbb{Z}, +)$.

- (b) The group $\mathbb{Z}_7^{\times} = \{1, 2, 3, 4, 5, 6\}$ with operation multiplication modulo 7.
- (c) The group

$$H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$

with operation given by matrix multiplication.

- (d) The Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (e) The group G of symmetries of an equilateral triangle.
- (17) List all the generators of the cyclic group $(\mathbb{Z}_{20}, +)$. What are the generators of $(\mathbb{Z}_n, +)$ for $n \in \mathbb{Z}^+$?
- (18) List all the generators of U_6 . List all the subgroups of U_6 .
- (19) Give the definition of the order of an element a of a group G.
- (20) Let G be a group and $a \in G$ an element of order $n \in \mathbb{Z}^+$. What is the order of a^m for $m \in \mathbb{Z}^+$?
- (21) Let G be a group and $a, b \in G$ elements of G. Show that the order of bab^{-1} is equal to the order of a.
- (22) Give the definition of the cyclic subgroup $H = \langle a \rangle$ of a group G generated by an element a. Explain why the order of the group $\langle a \rangle$ is equal to the order of the element a.
- (23) Let $G = GL_2(\mathbb{R})$ be the group of real 2×2 invertible matrices with operation given by matrix multiplication. Compute explicitly the cyclic subgroup of G generated by the element $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.