Math 411 Midterm 1, Thursday 10/13/11, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 6 questions for a total of 70 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely.

Q1 (16 points). Give the definition of a group (3 points). For each of the following cases, determine whether the given set with binary operation is a group.
(a) (3 points) The set $S=\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ with operation given by multiplication.
(b) (3 points) The set $S=\mathbb{R}$ with operation $*$ given by $a * b=\max (a, b)$ (that is, $a * b=a$ if $a \geq b$ and $a * b=b$ if $a \leq b$).
(c) (3 points) The set $S=\{e, a, b\}$ with operation $*$ defined by the table

$$
\begin{array}{c|ccc}
* & e & a & b \\
\hline e & e & a & b \\
a & a & e & a \\
b & b & a & e
\end{array}
$$

(d) (4 points) The set

$$
S=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(x)=a x+b, \quad a, b \in \mathbb{R}, \quad a \neq 0\}
$$

with operation given by composition of functions.
Q2 (13 points). Give the definition of a subgroup of a group (3 points). For each of the following cases, determine whether the subset H of the group G is a subgroup.
(a) (3 points) Let G be the group of symmetries of an equilateral triangle and H the subset of rotations.
(b) (3 points) Let $G=\mathbb{C}^{\times}$be the group of non-zero complex numbers with operation given by multiplication of complex numbers. Let $H \subset G$ be the subset given by $H=\{z \in G| | z \mid \leq 1\}$.
(c) (4 points) Let

$$
G=\mathrm{GL}_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, \quad a d-b c \neq 0\right\}
$$

be the group of 2×2 invertible matrices with operation given by matrix multiplication. Let $H \subset G$ be the subset of upper triangular matrices, that is,

$$
H=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G \right\rvert\, c=0\right\} .
$$

Q3 (10 points). Let G be a group. Let H be the subset of G given by

$$
H=\left\{a \in G \mid a^{2}=e\right\} .
$$

(a) (6 points) Show that if G is abelian then H is a subgroup of G.
(b) (4 points) Give an example of a group G such that the subset H defined above is not a subgroup of G.

Q4 (12 points).
(a) (3 points) Give the definition of an isomorphism of groups $\phi: G \rightarrow G^{\prime}$.
(b) (3 points) Let $G=\mathbb{R}$ be the group of real numbers with operation addition, and $G^{\prime}=\mathbb{R}^{+}$the group of positive real numbers with operation multiplication. Show that the function $\phi: G \rightarrow G^{\prime}$ given by $\phi(x)=e^{x}$ is an isomorphism of groups.
(c) (6 points) Let $G=\mathrm{GL}_{2}(\mathbb{R}$) be the group of 2×2 invertible matrices and let $A \in G$ be the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) .
$$

Compute the cyclic subgroup H of G generated by A. Describe an isomorphism $\phi: \mathbb{Z}_{n} \rightarrow H$ for some $n \in \mathbb{Z}^{+}$(to be determined).

Q5 (9 points). Let $G=\mathbb{Z}_{12}$ be the group of integers modulo 12 with operation addition.
(a) (3 points) Find all the generators of G.
(b) (6 points) Find all the subgroups of G and draw the subgroup diagram showing inclusions of subgroups.

Q6 (10 points). Let H and K be subgroups of a group G.
(a) (3 points) Show that $H \cap K$ is a subgroup of G.
(b) (7 points) Suppose that H and K are cyclic of orders m and n, and $\operatorname{gcd}(m, n)=1$. Show that $H \cap K=\{e\}$.

