411 Final Review Questions

Paul Hacking

December 2, 2011
(1) Let G and G^{\prime} be groups. Recall that a homomorphism from G to G^{\prime} is a function $\phi: G \rightarrow G^{\prime}$ such that $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in$ G. Which of the following functions are homomorphisms? If ϕ is a homomorphism, determine the kernel and image of ϕ.
(a) $\phi: \mathbb{Z}_{5} \rightarrow \mathbb{Z}, \phi(k)=k$.
(b) $\phi: \mathbb{R} \rightarrow U, \phi(\theta)=e^{i \theta}$. [Here $U=\{z \in \mathbb{C}| | z \mid=1\}$ with operation multiplication of complex numbers.]
(c) $\phi: S_{n} \rightarrow \mathbb{Z}_{2}, \phi(\sigma)=0$ if σ is even and $\phi(\sigma)=1$ if σ is odd.
(d) G is an abelian group and $\phi: G \rightarrow G, \phi(a)=a^{3}$. [What happens if G is not abelian, for example $G=S_{3}$?]
(e) $\phi: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{3}, \phi(k)=k \bmod 3$ (that is, $\phi(k)$ is the remainder on dividing k by 3.)
(f) $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{4}, \phi(k)=k \bmod 4$.
(g) $\phi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}, \phi(k)=6 k \bmod 10$.
(h) $\phi: D_{n} \rightarrow \mathbb{Z}_{2}, \phi(g)=0$ if g is a rotation (including the identity) and $\phi(g)=1$ if g is a reflection.
(2) Let

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}
$$

be the group of 2×2 invertible upper triangular matrices with operation matrix multiplication.
(a) Show that the function

$$
\phi: G \rightarrow \mathbb{R}^{\times}, \quad\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \mapsto a
$$

is a homomorphism from G to the group \mathbb{R}^{\times}of nonzero real numbers (with operation multiplication of real numbers).
(b) Describe the kernel and image of ϕ.
(3) Let

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

be the group of 3×3 upper triangular matrices with 1's on the diagonal, with operation matrix multiplication.
(a) Check that G is a group.
(b) Show that the function

$$
\phi: G \rightarrow \mathbb{R}, \quad\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \mapsto a
$$

is a homomorphism from G to the group of real numbers (with operation addition of real numbers).
(c) Describe the kernel and image of ϕ.
(4) (a) Let G and G^{\prime} be a finite groups such that $|G|=\left|G^{\prime}\right|$ and $\phi: G \rightarrow$ G^{\prime} a homomorphism from G to G^{\prime}. Show that ϕ is an isomorphism iff $\operatorname{ker} \phi=\{e\}$. [Hint: The pigeonhole principle says that if G and G^{\prime} are finite sets such that $|G|=\left|G^{\prime}\right|$ and $\phi: G \rightarrow G^{\prime}$ is a function from G to G^{\prime} then ϕ is injective $\Longleftrightarrow \phi$ is surjective $\Longleftrightarrow \phi$ is bijective.]
(b) Define a function $\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by

$$
k \mapsto(k \bmod m, k \bmod n) .
$$

Show that ϕ is a homomorphism, and compute the kernel of ϕ. Deduce that ϕ is an isomorphism iff $\operatorname{gcd}(m, n)=1$ [Hint: Use part (a)].
(5) Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups with kernel H. Let $a \in G$ be an element of G and $b=\phi(a)$. Give a description of the set $\phi^{-1}(b):=\{x \in G \mid \phi(x)=b\}$ in terms of H.
(6) Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Let a be an element of G. Show that the order of $\phi(a)$ in G^{\prime} divides the order of a in G. [Recall that the order of an element $a \in G$ is the smallest positive integer n such that $a^{n}=e$. Note that $a^{m}=e$ iff m is divisible by the order of a.]
(7) (a) Let $\phi: \mathbb{Z} \rightarrow G$ be a homomorphism such that $\phi(1)=a$. What is $\phi(k)$ for $k \in \mathbb{Z}$?
(b) Let $\phi: \mathbb{Z}_{n} \rightarrow G$ be a homomorphism such that $\phi(1)=a$. What is $\phi(k)$ for $k \in \mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$? What is a^{n} ?
(c) Let $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow G$ be a homomorphism such that $\phi(1,0)=a$ and $\phi(0,1)=b$. What is $\phi(k, l)$ for $(k, l) \in \mathbb{Z} \times \mathbb{Z}$? Show that $a b=b a$.
(8) Recall that we say a subgroup H of a group G is normal if $g H=H g$ for all $g \in G$ (that is, the left and right cosets of H in G coincide). Equivalently, $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$. Which of the following subgroups are normal?
(a) G is an abelian group and H is any subgroup of G.
(b) $G=S_{n}$ and $H=A_{n}$.
(c) $G=D_{n}$ and H the subgroup of rotations (including the identity).
(d) G is a finite group and H is a subgroup of G such that $|H|=\frac{1}{2}|G|$.
(e) $G=D_{n}, n \geq 3$, and $H=\langle\mu\rangle$ the subgroup generated by a reflection μ. [Hint: If $\rho \in D_{n}$ is the rotation about the center of the n-gon through angle $2 \pi / n$ counter-clockwise, then

$$
D_{n}=\left\{e, \rho, \rho^{2}, \ldots, \rho^{n-1}, \mu, \rho \mu, \rho^{2} \mu, \ldots, \rho^{n-1} \mu\right\}
$$

and the multiplication table can be determined using the relations $\rho^{n}=e, \mu^{2}=e$, and $\left.\mu \rho=\rho^{-1} \mu.\right]$
(f) G is any group, and H is the kernel of a homomorphism $\phi: G \rightarrow$ G^{\prime}.
(g) $G=S_{n}, n \geq 3$, and $H=\left\{\sigma \in S_{n} \mid \sigma(n)=n\right\}$.
(h) $G=S_{4}$ and $H=\{e,(12)(34),(13)(24),(14)(23)\}$.
(9) Suppose H is a normal subgroup of S_{n}. Let σ be an element of H and σ^{\prime} a permutation in S_{n} with the same cycle type as σ (that is, the lengths of the cycles in the expression of σ and σ^{\prime} as products of disjoint cycles are the same). Show that $\sigma^{\prime} \in H$. [Hint: H is a normal subgroup of S_{n} iff $g h g^{-1} \in H$ for all $h \in H$ and $g \in S_{n}$. How are the cycle decompositions of h and $g h g^{-1}$ related?]
(10) Let G be a group and $g \in G$ an element. Define a function $i_{g}: G \rightarrow G$ by $i_{g}(x)=g x g^{-1}$. [i_{g} is called "conjugation by g ".]
(a) Show carefully that i_{g} is an isomorphism.
(b) Deduce that the order of $g x g^{-1}$ equals the order of x for all $g, x \in$ G. [We have seen this before.]
(c) Now let H be a subgroup of G, and consider the subset

$$
g H g^{-1}:=\left\{g h g^{-1} \mid h \in H\right\}
$$

of G. Show that $g \mathrm{Hg}^{-1}$ is a subgroup of G which is isomorphic to H. [In particular, $\left|g H^{-1}\right|=|H|$.]
(11) Let $G=S_{3}$ and $H=\langle(12)\rangle=\{e,(12)\}$ the cyclic subgroup generated by (12).
(a) Compute the left cosets of H in G.
(b) Give an example to show that the product of two left cosets of H in G is not always a left coset. [So in this example we cannot define the structure of a group on the set of left cosets. This is because H is not a normal subgroup of G.]
(12) In each of the following cases, describe the quotient group as simply as possible.
(a) $\mathbb{Z} /\langle n\rangle$.
(b) $\mathbb{Z}_{12} /\langle 3\rangle$.
(c) $\mathbb{Z}_{30} /\langle 22\rangle$.
(d) G / G.
(e) $G /\{e\}$.
(f) $G_{1} \times G_{2} / H_{1} \times H_{2}$ (where H_{1} is a normal subgroup of G_{1} and H_{2} is a normal subgroup of G_{2}).
(g) $G_{1} \times G_{2} /\{e\} \times G_{2}$.
(h) $\mathbb{Z} \times \mathbb{Z} /\langle(0,5)\rangle$.
(i) $U /\langle i\rangle$.
(13) In each of the following cases, determine the standard abelian group (as in the fundamental theorem) that is isomorphic to G.
(a) $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} /\langle(1,2)\rangle$.
(b) $G=\mathbb{Z}_{9} \times \mathbb{Z}_{9} /\langle(3,3)\rangle$.
(c) $G=\mathbb{Z} \times \mathbb{Z}_{6} /\langle(1,2)\rangle$.
(14) Show that $G=D_{6}$ has a subgroup H isomorphic to D_{3}. Show that H is normal and describe the quotient G / H. [Hint: What is the order of D_{n} ?]. [Note: the same argument shows that $D_{2 n}$ has a normal subgroup isomorphic to D_{n}.]
(15) Let G be a group and H a normal subgroup of G.
(a) Show that if G is abelian then G / H is abelian. Give an example where G / H is abelian but G is not abelian.
(b) Show that if G is cyclic then G / H is cyclic. Give an example where G / H is cyclic but G is not cyclic.
(16) Let $G=D_{4}$ be the group of symmetries of a square. So there is an action of G on the set

$$
X=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\} \subset \mathbb{R}^{2}
$$

(a) Describe all the elements of G geometrically.
(b) Compute the orbits and stabilizers of the following points of X.
i. $(1,0)$
ii. $(1,1)$
iii. $(1 / 2,1 / 2)$
iv. $(1 / 2,1 / 3)$
(17) Let $G=D_{4}$ be the group of symmetries of the square. Let $A=\left\{l_{1}, l_{2}\right\}$ be the set of diagonals of the square (that is, the line segments joining opposite vertices). Then G acts on A, or, equivalently, we have a homomorphism $\phi: G \rightarrow S_{A}$ from G to the group of permutations of A. Determine the kernel and image of ϕ, and identify them with standard groups.
(18) Use the orbit-stabilizer theorem to determine the order of the symmetry group of a cube.
(19) A regular tetrahedron is a 3-dimensional object with 4 faces, each of which is an equilateral triangle. Find the order of the symmetry group of a regular tetrahedron.
(20) Consider the groups $G_{1}=\mathbb{Z}_{12}, G_{2}=S_{12}, G_{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{6}, G_{4}=D_{6}$, $G_{5}=A_{4}$. Show that no two of these groups are isomorphic. [Hint: To distinguish D_{6} and A_{4}, count the number of elements of some particular order.]

