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(1) Let G and G′ be groups. Recall that a homomorphism from G to G′

is a function φ : G → G′ such that φ(ab) = φ(a)φ(b) for all a, b ∈
G. Which of the following functions are homomorphisms? If φ is a
homomorphism, determine the kernel and image of φ.

(a) φ : Z5 → Z, φ(k) = k.

(b) φ : R→ U , φ(θ) = eiθ. [Here U = {z ∈ C | |z| = 1} with operation
multiplication of complex numbers.]

(c) φ : Sn → Z2, φ(σ) = 0 if σ is even and φ(σ) = 1 if σ is odd.

(d) G is an abelian group and φ : G→ G, φ(a) = a3. [What happens
if G is not abelian, for example G = S3?]

(e) φ : Z7 → Z3, φ(k) = k mod 3 (that is, φ(k) is the remainder on
dividing k by 3.)

(f) φ : Z12 → Z4, φ(k) = k mod 4.

(g) φ : Z10 → Z10, φ(k) = 6k mod 10.

(h) φ : Dn → Z2, φ(g) = 0 if g is a rotation (including the identity)
and φ(g) = 1 if g is a reflection.

(2) Let

G =

{(
a b
0 c

) ∣∣∣∣ a, b, c ∈ R, ac 6= 0

}
be the group of 2×2 invertible upper triangular matrices with operation
matrix multiplication.
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(a) Show that the function

φ : G→ R×,
(
a b
0 c

)
7→ a

is a homomorphism from G to the group R× of nonzero real num-
bers (with operation multiplication of real numbers).

(b) Describe the kernel and image of φ.

(3) Let

G =


1 a b

0 1 c
0 0 1

 ∣∣∣∣ a, b, c ∈ R


be the group of 3×3 upper triangular matrices with 1’s on the diagonal,
with operation matrix multiplication.

(a) Check that G is a group.

(b) Show that the function

φ : G→ R,

1 a b
0 1 c
0 0 1

 7→ a.

is a homomorphism from G to the group of real numbers (with
operation addition of real numbers).

(c) Describe the kernel and image of φ.

(4) (a) Let G and G′ be a finite groups such that |G| = |G′| and φ : G→
G′ a homomorphism from G to G′. Show that φ is an isomorphism
iff kerφ = {e}. [Hint: The pigeonhole principle says that if G and
G′ are finite sets such that |G| = |G′| and φ : G→ G′ is a function
from G to G′ then φ is injective ⇐⇒ φ is surjective ⇐⇒ φ is
bijective.]

(b) Define a function φ : Zmn → Zm × Zn by

k 7→ (k mod m, k mod n).

Show that φ is a homomorphism, and compute the kernel of φ.
Deduce that φ is an isomorphism iff gcd(m,n) = 1 [Hint: Use part
(a)].
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(5) Let φ : G → G′ be a homomorphism of groups with kernel H. Let
a ∈ G be an element of G and b = φ(a). Give a description of the set
φ−1(b) := {x ∈ G | φ(x) = b} in terms of H.

(6) Let φ : G→ G′ be a homomorphism. Let a be an element of G. Show
that the order of φ(a) in G′ divides the order of a in G. [Recall that
the order of an element a ∈ G is the smallest positive integer n such
that an = e. Note that am = e iff m is divisible by the order of a.]

(7) (a) Let φ : Z → G be a homomorphism such that φ(1) = a. What is
φ(k) for k ∈ Z?

(b) Let φ : Zn → G be a homomorphism such that φ(1) = a. What is
φ(k) for k ∈ Zn = {0, 1, . . . , n− 1}? What is an?

(c) Let φ : Z×Z→ G be a homomorphism such that φ(1, 0) = a and
φ(0, 1) = b. What is φ(k, l) for (k, l) ∈ Z×Z? Show that ab = ba.

(8) Recall that we say a subgroup H of a group G is normal if gH = Hg
for all g ∈ G (that is, the left and right cosets of H in G coincide).
Equivalently, ghg−1 ∈ H for all g ∈ G and h ∈ H. Which of the
following subgroups are normal?

(a) G is an abelian group and H is any subgroup of G.

(b) G = Sn and H = An.

(c) G = Dn and H the subgroup of rotations (including the identity).

(d) G is a finite group and H is a subgroup of G such that |H| = 1
2
|G|.

(e) G = Dn, n ≥ 3, and H = 〈µ〉 the subgroup generated by a
reflection µ. [Hint: If ρ ∈ Dn is the rotation about the center of
the n-gon through angle 2π/n counter-clockwise, then

Dn = {e, ρ, ρ2, . . . , ρn−1, µ, ρµ, ρ2µ, . . . , ρn−1µ}

and the multiplication table can be determined using the relations
ρn = e, µ2 = e, and µρ = ρ−1µ.]

(f) G is any group, and H is the kernel of a homomorphism φ : G→
G′.

(g) G = Sn, n ≥ 3, and H = {σ ∈ Sn | σ(n) = n}.
(h) G = S4 and H = {e, (12)(34), (13)(24), (14)(23)}.
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(9) Suppose H is a normal subgroup of Sn. Let σ be an element of H
and σ′ a permutation in Sn with the same cycle type as σ (that is,
the lengths of the cycles in the expression of σ and σ′ as products of
disjoint cycles are the same). Show that σ′ ∈ H. [Hint: H is a normal
subgroup of Sn iff ghg−1 ∈ H for all h ∈ H and g ∈ Sn. How are the
cycle decompositions of h and ghg−1 related?]

(10) Let G be a group and g ∈ G an element. Define a function ig : G→ G
by ig(x) = gxg−1. [ig is called “conjugation by g”.]

(a) Show carefully that ig is an isomorphism.

(b) Deduce that the order of gxg−1 equals the order of x for all g, x ∈
G. [We have seen this before.]

(c) Now let H be a subgroup of G, and consider the subset

gHg−1 := {ghg−1 | h ∈ H}

of G. Show that gHg−1 is a subgroup of G which is isomorphic
to H. [In particular, |gHg−1| = |H|.]

(11) Let G = S3 and H = 〈(12)〉 = {e, (12)} the cyclic subgroup generated
by (12).

(a) Compute the left cosets of H in G.

(b) Give an example to show that the product of two left cosets of
H in G is not always a left coset. [So in this example we cannot
define the structure of a group on the set of left cosets. This is
because H is not a normal subgroup of G.]

(12) In each of the following cases, describe the quotient group as simply as
possible.

(a) Z/〈n〉.
(b) Z12/〈3〉.
(c) Z30/〈22〉.
(d) G/G.

(e) G/{e}.
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(f) G1 ×G2/H1 ×H2 (where H1 is a normal subgroup of G1 and H2

is a normal subgroup of G2).

(g) G1 ×G2/{e} ×G2.

(h) Z× Z/〈(0, 5)〉.
(i) U/〈i〉.

(13) In each of the following cases, determine the standard abelian group
(as in the fundamental theorem) that is isomorphic to G.

(a) G = Z2 × Z4/〈(1, 2)〉.
(b) G = Z9 × Z9/〈(3, 3)〉.
(c) G = Z× Z6/〈(1, 2)〉.

(14) Show that G = D6 has a subgroup H isomorphic to D3. Show that H
is normal and describe the quotient G/H. [Hint: What is the order of
Dn?]. [Note: the same argument shows that D2n has a normal subgroup
isomorphic to Dn.]

(15) Let G be a group and H a normal subgroup of G.

(a) Show that if G is abelian then G/H is abelian. Give an example
where G/H is abelian but G is not abelian.

(b) Show that if G is cyclic then G/H is cyclic. Give an example
where G/H is cyclic but G is not cyclic.

(16) Let G = D4 be the group of symmetries of a square. So there is an
action of G on the set

X = {(x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1} ⊂ R2

(a) Describe all the elements of G geometrically.

(b) Compute the orbits and stabilizers of the following points of X.

i. (1,0)

ii. (1,1)

iii. (1/2,1/2)

iv. (1/2,1/3)

5



(17) Let G = D4 be the group of symmetries of the square. Let A = {l1, l2}
be the set of diagonals of the square (that is, the line segments joining
opposite vertices). Then G acts on A, or, equivalently, we have a
homomorphism φ : G→ SA from G to the group of permutations of A.
Determine the kernel and image of φ, and identify them with standard
groups.

(18) Use the orbit-stabilizer theorem to determine the order of the symmetry
group of a cube.

(19) A regular tetrahedron is a 3-dimensional object with 4 faces, each of
which is an equilateral triangle. Find the order of the symmetry group
of a regular tetrahedron.

(20) Consider the groups G1 = Z12, G2 = S12, G3 = Z2 × Z6, G4 = D6,
G5 = A4. Show that no two of these groups are isomorphic. [Hint: To
distinguish D6 and A4, count the number of elements of some particular
order.]
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