Math 300.2 Midterm 2 review questions

Paul Hacking

April 4, 2012

Reading: Gilbert and Vanstone, Chapters 3,5,6.
(1) Show that if $x \in \mathbb{Z}$ then x^{2} is congruent to 0 , 1 , or 4 modulo 8 .
(2) Find all solutions of the following congruences.
(a) $x^{2} \equiv 3 \bmod 11$.
(b) $x^{3} \equiv 2 \bmod 5$.
(c) $x^{2}+3 x+3 \equiv 0 \bmod 7$.
(3) Find all solutions of the following linear congruences or prove that no solutions exist.
(a) $3 x \equiv 8 \bmod 11$.
(b) $12 x \equiv 6 \bmod 18$.
(c) $21 x \equiv 5 \bmod 51$.
(4) Find all solutions of the following pairs of linear congruences or prove that none exist.
(a) $x \equiv 1 \bmod 3, x \equiv 4 \bmod 7$
(b) $x \equiv 8 \bmod 15, x \equiv 7 \bmod 33$.
(5) Find one solution of the congruence $x^{2} \equiv 58 \bmod 77$. [Hint: Use the Chinese remainder theorem.]
(6) Give the definition of the Euler phi function $\phi: \mathbb{N} \rightarrow \mathbb{N}$.
(a) Show carefully that for p a prime number and $\alpha \in \mathbb{N}$ we have $\phi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$.
(b) State a general formula for $\phi(m)$ in terms of the prime factorization of m, and use it to compute $\phi(108)$.
(7) Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{N}$.
(a) Show carefully that if $a \equiv c \bmod m$ and $b \equiv d \bmod m$ then $a b \equiv$ $c d \bmod m$.
(b) Use part (a) and mathematical induction to prove that if $a \equiv$ $b \bmod m$ then $a^{n} \equiv b^{n} \bmod m$ for each $n \in \mathbb{N}$.
(8) Let $a, b, c \in \mathbb{Z}$ and $m \in \mathbb{N}$
(a) Show that if $a b \equiv a c \bmod m$ and $\operatorname{gcd}(a, m)=1$ then $b \equiv c \bmod m$.
(b) Show by example that the condition $\operatorname{gcd}(a, m)=1$ is necessary in part (a).
(9) Let R be a relation on a set S. What does it mean to say that R is an equivalence relation? Which of the following relations are equivalence relations? Justify your answers carefully.
(a) $S=\mathbb{Z}, x R y \Longleftrightarrow 7 \mid(x-y)$.
(b) $S=\mathbb{R}, x R y \Longleftrightarrow x \leq y$.
(c) $S=\mathbb{N}, x R y \Longleftrightarrow x \mid y$.
(d) $S=\mathbb{R}^{2},(a, b) R(c, d) \Longleftrightarrow \sqrt{(a-c)^{2}+(b-d)^{2}} \leq 1$.
(e) $S=\mathbb{R}^{2},(a, b) R(c, d) \Longleftrightarrow \exists \lambda \in \mathbb{R}$ such that $\lambda>0$ and $(a, b)=(\lambda c, \lambda d)$.
(f) $S=\mathbb{Z} \times \mathbb{N},(a, b) R(c, d) \Longleftrightarrow a d=b c$.
(10) Let R be an equivalence relation on a set S. Recall that for $x \in S$ the equivalence class $[x]$ of x is defined by

$$
[x]=\{y \in S \mid y R x\}
$$

Show carefully that if $[x] \cap[y] \neq \emptyset$ then $[x]=[y]$. [Hint: First show $x R y$. Then show $[x] \subset[y]$ and $[y] \subset[x]$, so $[x]=[y]$.]
(11) For each of the relations R in Q9 which are equivalence relations, describe the equivalence classes explicitly. [Hint: Recall that the equivalence classes of an equivalence relation R on a set S give a partition of the set S. Make sure your answer has this property!]
(12) Express the repeating decimal $0.131313 \cdots$ as a fraction. [Hint: Recall that the meaning of a decimal expansion $x=0 . a_{1} a_{2} a_{3} \cdots$, where $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1, \ldots, 9\}$ are the digits, is $x=\sum_{n=1}^{\infty} a_{n} \cdot 10^{-n}$. Now use the formula $\sum_{n=0}^{\infty} r^{n}=1 /(1-r)$ for the sum of a geometric series with common ratio r such that $|r|<1$.]
(13) For each of the following functions, compute the inverse or prove that no inverse exists.
(a) $f:\{1,2,3\} \rightarrow\{A, B, C\}, 1 \mapsto B, 2 \mapsto C, 3 \mapsto A$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=5 x-2$.
(c) $f:[2, \infty) \rightarrow[3, \infty), f(x)=x^{2}-2 x+3$. [Hint: Use the quadratic formula.]
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}+5 x^{2}$.
(e) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}+3 x+5$.
(f) $f:[0,2 \pi] \rightarrow[-1,1], f(x)=\cos (x)$.
(g) $f:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}, f(x)=\tan (x)$.
(14) Let $f: X \rightarrow Y$ be a function. What does it mean to say that f is injective? What does it mean to say that f is surjective? (Give precise definitions.)
(a) Show that if $f: X \rightarrow Y$ is injective and $X \neq \emptyset$ then there exists a surjective function $g: Y \rightarrow X$. [Hint: construct a function g such that $g(f(x))=x$ for all $x \in X$.]
(b) Show that if $f: X \rightarrow Y$ is surjective then there exists an injective function $g: Y \rightarrow X$. [Hint: construct a function g such that $f(g(y))=y$ for all $y \in Y$.]
(15) Let X, Y, Z be sets and $f: X \rightarrow Y, g: Y \rightarrow Z$ be functions. Define the composite function $g \circ f: X \rightarrow Z$.
(a) Show that if f is surjective and g is surjective then $g \circ f$ is surjective.
(b) Show that if $g \circ f$ is injective then f is injective.
(c) Give an example of two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that $g \circ f$ is injective but g is not injective.
(16) For each of the following pairs of sets X and Y, describe a bijection $f: X \rightarrow Y$ or prove that no such bijection exists.
(a) $X=\mathbb{N}, Y=\{n \in \mathbb{N} \mid n \geq 5\}$.
(b) $X=\mathbb{N}, Y=\{n \in \mathbb{N} \mid n \equiv 3 \bmod 4\}$.
(c) $X=\mathbb{N}, Y=\mathbb{N} \times \mathbb{N}$.
(d) $X=\mathbb{Z}, Y=\mathbb{R}$.
(e) $X=[0,1], Y=[3,7]$. [Hint: Use a linear function $f(x)=m x+c$ where $m, c \in \mathbb{R}$ are to be determined.]
(f) $X=(0,1), Y=\mathbb{R}$. [Hint: First construct a bijection from $(0,1)$ to ($-\pi / 2, \pi / 2$), similarly to part (e). Then use Q13(g)].
(g) $X=\mathbb{Q}, Y=(0,1)$.
(17) Let X and Y be countable sets.
(a) Show that $X \cup Y$ is countable. [Hint: Recall that if Z is a set and $f: \mathbb{N} \rightarrow Z$ is a surjection, then there exists a bijection $g: \mathbb{N} \rightarrow Z$ (why?), that is, Z is countable. So it suffices to construction a surjection from \mathbb{N} to $X \cup Y$.]
(b) Show that $X \times Y$ is countable.

