Math 300.2 Midterm 2 review questions

Paul Hacking

April 4, 2012

Reading: Gilbert and Vanstone, Chapters 3,5,6.

- (1) Show that if $x \in \mathbb{Z}$ then x^2 is congruent to 0, 1, or 4 modulo 8.
- (2) Find all solutions of the following congruences.
 - (a) $x^2 \equiv 3 \mod 11$.
 - (b) $x^3 \equiv 2 \mod 5$.
 - (c) $x^2 + 3x + 3 \equiv 0 \mod 7$.
- (3) Find all solutions of the following linear congruences or prove that no solutions exist.
 - (a) $3x \equiv 8 \mod 11$.
 - (b) $12x \equiv 6 \mod 18$.
 - (c) $21x \equiv 5 \mod 51$.
- (4) Find all solutions of the following pairs of linear congruences or prove that none exist.
 - (a) $x \equiv 1 \mod 3, x \equiv 4 \mod 7$
 - (b) $x \equiv 8 \mod 15, x \equiv 7 \mod 33$.
- (5) Find one solution of the congruence $x^2 \equiv 58 \mod 77$. [Hint: Use the Chinese remainder theorem.]
- (6) Give the definition of the Euler phi function $\phi \colon \mathbb{N} \to \mathbb{N}$.

- (a) Show carefully that for p a prime number and $\alpha \in \mathbb{N}$ we have $\phi(p^{\alpha}) = p^{\alpha-1}(p-1).$
- (b) State a general formula for $\phi(m)$ in terms of the prime factorization of m, and use it to compute $\phi(108)$.
- (7) Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{N}$.
 - (a) Show carefully that if $a \equiv c \mod m$ and $b \equiv d \mod m$ then $ab \equiv cd \mod m$.
 - (b) Use part (a) and mathematical induction to prove that if $a \equiv b \mod m$ then $a^n \equiv b^n \mod m$ for each $n \in \mathbb{N}$.
- (8) Let $a, b, c \in \mathbb{Z}$ and $m \in \mathbb{N}$
 - (a) Show that if $ab \equiv ac \mod m$ and gcd(a, m) = 1 then $b \equiv c \mod m$.
 - (b) Show by example that the condition gcd(a, m) = 1 is necessary in part (a).
- (9) Let R be a relation on a set S. What does it mean to say that R is an equivalence relation? Which of the following relations are equivalence relations? Justify your answers carefully.
 - (a) $S = \mathbb{Z}, xRy \iff 7 \mid (x y).$
 - (b) $S = \mathbb{R}, xRy \iff x \le y.$
 - (c) $S = \mathbb{N}, xRy \iff x \mid y.$
 - (d) $S = \mathbb{R}^2$, $(a, b)R(c, d) \iff \sqrt{(a-c)^2 + (b-d)^2} \le 1$.
 - (e) $S = \mathbb{R}^2$, $(a, b)R(c, d) \iff \exists \lambda \in \mathbb{R}$ such that $\lambda > 0$ and $(a, b) = (\lambda c, \lambda d)$.
 - (f) $S = \mathbb{Z} \times \mathbb{N}, (a, b)R(c, d) \iff ad = bc.$
- (10) Let R be an equivalence relation on a set S. Recall that for $x \in S$ the equivalence class [x] of x is defined by

$$[x] = \{y \in S \mid yRx\}$$

Show carefully that if $[x] \cap [y] \neq \emptyset$ then [x] = [y]. [Hint: First show xRy. Then show $[x] \subset [y]$ and $[y] \subset [x]$, so [x] = [y].]

- (11) For each of the relations R in Q9 which are equivalence relations, describe the equivalence classes explicitly. [Hint: Recall that the equivalence classes of an equivalence relation R on a set S give a partition of the set S. Make sure your answer has this property!]
- (12) Express the repeating decimal $0.131313\cdots$ as a fraction. [Hint: Recall that the meaning of a decimal expansion $x = 0.a_1a_2a_3\cdots$, where $a_1, a_2, a_3, \ldots \in \{0, 1, \ldots, 9\}$ are the digits, is $x = \sum_{n=1}^{\infty} a_n \cdot 10^{-n}$. Now use the formula $\sum_{n=0}^{\infty} r^n = 1/(1-r)$ for the sum of a geometric series with common ratio r such that |r| < 1.]
- (13) For each of the following functions, compute the inverse or prove that no inverse exists.
 - (a) $f: \{1, 2, 3\} \to \{A, B, C\}, 1 \mapsto B, 2 \mapsto C, 3 \mapsto A.$
 - (b) $f \colon \mathbb{R} \to \mathbb{R}, f(x) = 5x 2.$
 - (c) $f: [2, \infty) \to [3, \infty), f(x) = x^2 2x + 3$. [Hint: Use the quadratic formula.]
 - (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 5x^2$.
 - (e) $f \colon \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 3x + 5.$
 - (f) $f: [0, 2\pi] \to [-1, 1], f(x) = \cos(x).$
 - (g) $f: (-\pi/2, \pi/2) \to \mathbb{R}, f(x) = \tan(x).$
- (14) Let $f: X \to Y$ be a function. What does it mean to say that f is injective? What does it mean to say that f is surjective? (Give precise definitions.)
 - (a) Show that if $f: X \to Y$ is injective and $X \neq \emptyset$ then there exists a surjective function $g: Y \to X$. [Hint: construct a function g such that g(f(x)) = x for all $x \in X$.]
 - (b) Show that if $f: X \to Y$ is surjective then there exists an injective function $g: Y \to X$. [Hint: construct a function g such that f(g(y)) = y for all $y \in Y$.]
- (15) Let X, Y, Z be sets and $f: X \to Y, g: Y \to Z$ be functions. Define the composite function $g \circ f: X \to Z$.

- (a) Show that if f is surjective and g is surjective then $g \circ f$ is surjective.
- (b) Show that if $g \circ f$ is injective then f is injective.
- (c) Give an example of two functions $f: X \to Y$ and $g: Y \to Z$ such that $g \circ f$ is injective but g is not injective.
- (16) For each of the following pairs of sets X and Y, describe a bijection $f: X \to Y$ or prove that no such bijection exists.
 - (a) $X = \mathbb{N}, Y = \{n \in \mathbb{N} \mid n \ge 5\}.$
 - (b) $X = \mathbb{N}, Y = \{n \in \mathbb{N} \mid n \equiv 3 \mod 4\}.$
 - (c) $X = \mathbb{N}, Y = \mathbb{N} \times \mathbb{N}.$
 - (d) $X = \mathbb{Z}, Y = \mathbb{R}.$
 - (e) X = [0, 1], Y = [3, 7]. [Hint: Use a linear function f(x) = mx + cwhere $m, c \in \mathbb{R}$ are to be determined.]
 - (f) $X = (0, 1), Y = \mathbb{R}$. [Hint: First construct a bijection from (0, 1) to $(-\pi/2, \pi/2)$, similarly to part (e). Then use Q13(g)].
 - (g) $X = \mathbb{Q}, Y = (0, 1).$
- (17) Let X and Y be countable sets.
 - (a) Show that X∪Y is countable. [Hint: Recall that if Z is a set and f: N→Z is a surjection, then there exists a bijection g: N→Z (why?), that is, Z is countable. So it suffices to construction a surjection from N to X∪Y.]
 - (b) Show that $X \times Y$ is countable.