Math 300.2 Midterm 1 review questions

Paul Hacking

February 27, 2012

Reading: Gilbert and Vanstone, Chapters 1,2,4.
(1) Give the truth tables for the following statements.
(a) $P \Rightarrow Q$.
(b) $\operatorname{NOT}(P$ OR $Q)$.
(c) $(P \operatorname{AND} Q) \Rightarrow R$.
(2) Show that the following statements are equivalent
(a) $\operatorname{NOT}(P \operatorname{AND} Q),(\operatorname{NOT} P) \operatorname{OR}(\operatorname{NOT} Q)$.
(b) $P \Rightarrow(Q$ OR $R),(P \operatorname{AND}(\operatorname{NOT} Q)) \Rightarrow R$.
(3) Describe the following sets explicitly. [Recall: \mathbb{N} is the set of positive integers, \mathbb{Z} is the set of integers, and \mathbb{R} is the set of real numbers.]
(a) $\left\{x \in \mathbb{Z} \mid 25<x^{2}<50\right\}$.
(b) $\left\{x \in \mathbb{R} \mid x^{2}=x+1\right\}$.
(c) $\{x \in \mathbb{N} \mid x$ divides 30$\}$.
(4) Recall if A and B are sets then

$$
\begin{gathered}
A \cup B=\{x \mid(x \in A) \operatorname{OR}(x \in B)\} \\
A \cap B=\{x \mid(x \in A) \operatorname{AND}(x \in B)\} \\
A \backslash B=\{x \mid(x \in A) \operatorname{AND}(x \notin B)\}
\end{gathered}
$$

Show that

$$
A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)
$$

using (a) a Venn diagram (b) a truth table.
(5) Translate the following mathematical statements into an english sentence.
(a) $\forall x \in \mathbb{R} \quad e^{x}>0$.
(b) $\exists x \in \mathbb{R} \quad x^{3}=7$.
(c) $\exists b \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad|\sin (x)| \leq b$.
(d) $\forall a, b \in \mathbb{N} \quad((\operatorname{gcd}(a, b)=1) \Rightarrow(\exists x, y \in \mathbb{Z} \quad a x+b y=1))$.
(6) Negate the following statements.
(a) $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y \leq x$.
(b) $\forall a \in \mathbb{N} \quad \exists b, c \in \mathbb{Z} \quad\left(a=b^{2}+c^{2}\right)$.
(7) Prove the following statements for each $n \in \mathbb{N}$ by induction.
(a) $\sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
(b) $\sum_{i=1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
(c) $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$.
(8) (a) Prove that $\binom{2 n}{n} \geq 2^{n}$ for $n \in \mathbb{N}$. [Hint: Use the binomial coefficient formula $\binom{m}{r} \stackrel{m!}{r!(m-r)!}$ and induction.]
(b) The Fibonnaci numbers are defined by $F_{1}=F_{2}=1$ and $F_{n+2}=$ $F_{n+1}+F_{n}$. Prove that $F_{n} \leq 2^{n}$ for $n \in \mathbb{N}$ using strong induction.
(c) Guess a formula for the sum

$$
f(n)=1-3+5-\cdots+(-1)^{n-1}(2 n-1)=\sum_{i=1}^{n}(-1)^{i-1}(2 i-1) .
$$

Prove your formula is correct using induction.
(9) (a) Let $x \in \mathbb{R}, x \geq 0$. Prove that $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$ using the binomial theorem.
(b) Let $x \in \mathbb{R}, x \geq-1$. Prove that $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$ using induction.
(10) Prove the following identity for each $n \in \mathbb{N}$:

$$
\left(1-x^{\left(2^{n}\right)}\right)=\left(1-x^{2}\right)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \cdots\left(1+x^{\left(2^{n-1}\right)}\right)=\left(1-x^{2}\right) \prod_{i=1}^{n-1}\left(1+x^{\left(2^{i}\right)}\right)
$$

[Hint: Proof by induction. Use the "difference of two squares" identity $a^{2}-b^{2}=(a+b)(a-b)$ and the law of exponents $x^{p q}=\left(x^{p}\right)^{q}$.]
(11) The downtown portion of a city is a rectangular grid. A pedestrian must travel from one street corner to another, a total distance of 5 blocks north and 3 blocks east. How many routes are there which are as short as possible? How many routes are there if the pedestrian must travel m blocks north and n blocks east, for some $m, n \in \mathbb{N}$? [Hint: The answer is a binomial coefficient]
(12) Find all solutions $x, y \in \mathbb{Z}$ to the following equations or prove that there are none. Explain your work carefully.
(a) $15 x+57 y=4$
(b) $13 x+30 y=2$.
(c) $14 x=35 y+21$.
(13) Compute the greatest common divisor of the following pairs of integers.
(a) 24 and 45 .
(b) $2^{2} 3^{3} 5^{2} 7^{4}$ and $2^{5} 3^{4} 11^{6}$.
(c) 343 and 667
(14) For each of the following statements, prove or give a counter example.
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid 3 b-5 c$.
(c) If $a \mid b c$ then $a \mid b$ or $a \mid c$.
(15) Let p be a prime number and $a \in \mathbb{Z}$. Prove that $\operatorname{gcd}(a, p)=p$ if p divides a and $\operatorname{gcd}(a, p)=1$ otherwise.
(16) Let $a, b, c \in \mathbb{N}$ be positive integers. Let $d=\operatorname{gcd}(a, b)$ and $e=a / d \in \mathbb{Z}$. Prove that $a|b c \Longleftrightarrow e| c$.

