Math 300 Midterm 2, Wednesday 4/11/12, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 7 questions for a total of 80 points. Calculators, notes, and textbooks are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely.

Q1 (12 points). Find all solutions to the following congruences.
(a) (4 points) $x^{2}-x+3 \equiv 0 \bmod 5$.
(b) (4 points) $13 x \equiv 5 \bmod 29$
(c) (4 points) $x \equiv 3 \bmod 5$ and $x \equiv 1 \bmod 6$.

Q2 (8 points). Let n be a positive integer with digits $a_{r}, a_{r-1}, \ldots, a_{0}$ (in the usual base 10 notation). Show that

$$
n \equiv a_{r}+a_{r-1}+\cdots+a_{0} \bmod 9
$$

Q3 (13 points). Let R be a relation on a set S. What does it mean to say that R is an equivalence relation?(3 points). For each of the following relations R, either prove carefully that R is an equivalence relation or show by example that one of the required properties is not satisfied.
(a) (3 points) $S=\mathbb{R}, x R y \Longleftrightarrow x-y=2 \pi k$ for some $k \in \mathbb{Z}$.
(b) (3 points) $S=\mathbb{R}, x R y \Longleftrightarrow|x-y|<3$.
(c) (4 points) $S=\mathbb{N}, a R b \Longleftrightarrow a b$ is a square, that is, $a b=n^{2}$ for some $n \in \mathbb{N}$.

Q4 (12 points). For each of the following functions, compute the inverse or prove that no inverse exists.
(a) (3 points) $f:\{1,2,3,4\} \rightarrow\{A, B, C, D\}, f(1)=D, f(2)=B, f(3)=$ $A, f(4)=C$.
(b) (3 points) $f:[0, \pi] \rightarrow[0,1], f(x)=\sin (x)$.
(c) (3 points) $f:[0, \infty) \rightarrow \mathbb{R}, f(x)=x^{2}+4$
(d) (3 points) $f:[0, \infty) \rightarrow(0,1], f(x)=1 /\left(1+x^{2}\right)$.

Q5. (11 points) Let X, Y, Z be sets and $f: X \rightarrow Y, g: Y \rightarrow Z$ be functions. Define the composite function $g \circ f$ (2 points).
(a) (3 points) Show that if f is injective and g is injective then $g \circ f$ is injective.
(b) (3 points) Show that if $g \circ f$ is surjective then g is surjective.
(c) (3 points) Give an example of two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that $g \circ f$ is surjective but f is not surjective.

Q6 (12 points). For each of the following pairs of sets X and Y, describe a bijection $f: X \rightarrow Y$ or prove that no such bijection exists.
(a) (4 points) $X=\mathbb{N}, Y=\{n \in \mathbb{N} \mid n \geq 11\}$.
(b) (4 points) $X=[2,4], Y=[5,8]$.
(c) (4 points) $X=\mathbb{Q}, Y=\mathbb{R}$.

Q7 (12 points). What does it mean to say that a set X is countable? (2 points). Let X be a countable set and Y a finite set.
(a) (5 points) Show that $X \cup Y$ is countable.
(b) (5 points) Show that $X \times Y$ is countable.

