Math 300.2 Final exam review questions

Paul Hacking

April 29, 2012

Reading: Gilbert and Vanstone, Chapters 1,2,3,4,5,6,8.
(1) Let P and Q be statements.
(a) What is the contrapositive of $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its contrapositive are equivalent.
(b) What is the converse of the statement $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its converse are not equivalent.
(2) Let A, B, C be sets.
(a) Define the union $A \cup B$, the intersection $A \cap B$, and the difference $A \backslash B$.
(b) Show using a truth table that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. Check this result using a Venn diagram.
(c) Show using a truth table that $(A \cup B) \backslash C=(A \backslash C) \cup(B \backslash C)$. Check this result using a Venn diagram.
(3) Translate the following statements into english sentences.
(a) $\forall x \in \mathbb{N} \quad x \geq 1$
(b) $\forall x \in \mathbb{R} \quad x^{2} \geq 0$
(c) $\exists x \in \mathbb{R} \quad x^{2}-6 x+7=0$
(d) $\exists x \in \mathbb{Z} \quad x^{2} \equiv 2 \bmod 7$
(e) $\forall z, w \in \mathbb{C} \quad(z w=0 \Rightarrow((z=0) \operatorname{OR}(w=0)))$
(f) $\forall x \in \mathbb{N} \quad \exists y \in \mathbb{N} \quad y>x$
(g) $\forall y \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad x^{3}=y$
(4) Negate the following statements, then translate into an english sentence.
(a) $\exists x \in \mathbb{Z} \quad x^{2} \equiv 3 \bmod 4$
(b) $\forall x \in \mathbb{R} \quad x^{2}-4 x+2>0$
(c) $\forall x \in \mathbb{N} \quad \exists y \in \mathbb{N} \quad y<x$
(d) $\exists b \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad \log x \leq b$
(e) $\exists x, y, z \in \mathbb{N} \quad x^{3}+y^{3}=z^{3}$
(5) Translate the following sentences into mathematical statements using quantifiers.
(a) $x^{2}+2 x+3$ is positive for all real numbers x.
(b) There is a real number x such that $x^{2}=2$.
(c) For every positive integer n there is a real number a such that $e^{x} \geq x^{n}$ for $x \geq a$.
(d) There is a real number b such that $x-x^{2} \leq b$ for all real numbers x.
(6) Define a sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ recursively by $a_{1}=10$ and $a_{n+1}=3 a_{n}-8$ for $n \in \mathbb{N}$. Prove that $a_{n}=2 \cdot 3^{n}+4$ for all $n \in \mathbb{N}$.
(7) Prove that

$$
\sum_{r=1}^{n}(2 r+1)=3+5+7+\cdots+(2 n+1)=n(n+2)
$$

for each $n \in \mathbb{N}$.
(8) Prove that

$$
\sum_{r=1}^{n} r(r+2)=1 \cdot 3+2 \cdot 4+\cdots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7)
$$

for each $n \in \mathbb{N}$.
(9) Let $p(x)$ be a polynomial of degree n with real coefficients. That is,

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $a_{n} \neq 0$. Prove by induction on n that the equation $p(x)=0$ has at most n real solutions.
(10) Prove that $5^{n}>4^{n}+3^{n}+2^{n}$ for $n \geq 3$.
(11) Prove that $5^{2 n}-3^{n} \equiv 0 \bmod 11$ for all $n \in \mathbb{N}$.
(12) Define the Fibonacci numbers F_{n} for $n \in \mathbb{N}$ by $F_{1}=F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 2$.
(a) Write down the first few terms of the Fibonnaci sequence $F_{1}, F_{2}, F_{3}, \ldots$.
(b) Prove that $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} \cdot F_{n+1}$ for each $n \in \mathbb{N}$.
(13) Let $a, b \in \mathbb{N}$. Define the greatest common divisor $\operatorname{gcd}(a, b)$. Compute the greatest common divisor of the following pairs of integers
(a) 123,39 .
(b) 157,83 .
(c) $2^{5} \cdot 3^{7} \cdot 5^{9} \cdot 11^{4}, 2 \cdot 3^{2} \cdot 7^{10}$.
(14) Find all solutions $x, y \in \mathbb{Z}$ of the following equations.
(a) $24 x+52 y=8$
(b) $42 x+15 y=7$
(15) What does it mean to say a positive integer $n>1$ is prime?
(a) State the fundamental theorem of arithmetic.
(b) List all the positive divisors of 72 .
(c) Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorization of a positive integer n. How many positive divisors of n are there?
(16) Find all solutions of the following congruences.
(a) $x \equiv 2 \bmod 7$ and $x \equiv 3 \bmod 11$.
(b) $5 x \equiv 12 \bmod 17$.
(c) $x^{2}+3 x+1 \equiv 0 \bmod 5$.
(17) Prove that congruence modulo m defines an equivalence relation on the set \mathbb{Z}.
(18) State Fermat's little theorem. Let p be a prime and let $\alpha \in \mathbb{N}$ be such that $\operatorname{gcd}(\alpha, p-1)=1$
(a) Explain why there exists $\beta \in \mathbb{N}$ such that $\alpha \beta \equiv 1 \bmod (p-1)$
(b) Let $X=\{1,2 \ldots, p-1\}$. Show that the function $f: X \rightarrow X$, $f(x)=x^{\alpha} \bmod p$ has inverse $g: X \rightarrow X$ given by $g(x)=x^{\beta} \bmod$ p, where β is the number from part (a).
(19) Let $m \in \mathbb{N}$ and let $a \in \mathbb{N}$ be such that $\operatorname{gcd}(a, m)=1$
(a) Let $X=\{0,1,2, \ldots, m-1\}$. Show that the function $f: X \rightarrow X$ given by $f(x)=a x \bmod m$ is injective.
(b) Deduce that f is bijective.
(20) Let S be a set and R a relation on S. What does it mean to say that R is an equivalence relation? In each of the following cases, determine whether R is an equivalence relation.
(a) $S=\mathbb{Z}, a R b \Longleftrightarrow a \leq b$.
(b) $S=\mathbb{Q}, a R b \Longleftrightarrow b=a \cdot 2^{n}$ for some $n \in \mathbb{Z}$.
(c) $S=\mathbb{C}, z R w \Longleftrightarrow|z-w| \leq 1$
(d) S is the set of all lines in the plane, and for two lines l and m we define $l R m \Longleftrightarrow l$ is parallel to m.
(21) Let $S=\mathbb{R}^{2} \backslash\{(0,0)\}$ and R be the relation on S defined by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{2}, y_{2}\right)=\lambda\left(x_{1}, y_{1}\right)$ for some positive real number λ.
(a) Show that R is an equivalence relation.
(b) Draw a picture showing the equivalence classes of R.
(c) Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$ be the circle with center the origin and radius 1 . Let f be the function

$$
f: C \rightarrow S / R
$$

from the circle C to the set S / R of equivalence classes of R given by $f(x, y)=[(x, y)]$ (that is, $f(x, y)$ is the equivalence class of $(x, y))$. Show that f is a bijection.
(22) Let X and Y be sets and $f: X \rightarrow Y$ a function from X to Y. What does it mean to say that f is injective? What does it mean to say that f is surjective. For each of the following functions determine whether f is injective and whether f is surjective. (Justify your answers carefully.)
(a) $f: \mathbb{N}^{2} \rightarrow \mathbb{N}, f(a, b)=3^{a} \cdot 7^{b}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-3 x$.
(c) $f:[0, \pi] \rightarrow \mathbb{R}, f(x)=2 \sin x+5$.
(d) $f: \mathbb{C} \rightarrow \mathbb{R}, f(z)=|z|$.
(23) Let X and Y be sets and $f: X \rightarrow Y$ a function from X to Y. What condition must f satisfy in order to have an inverse? In each of the following cases determine whether f has an inverse and if so describe the inverse explicitly.
(a) $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=3 \log _{e} x+5$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=4 x+7$.
(c) $f:[0,1] \rightarrow[7,11], f(x)=x^{2}+3 x+7$.
(24) Let $a, b \in \mathbb{N}$.
(a) Show that the function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ defined by $f(x, y)=a x+b y$ is surjective if and only if $\operatorname{gcd}(a, b)=1$.
(b) Is f injective? Justify your answer.
(25) Let X, Y be sets and $f: X \rightarrow Y, g: Y \rightarrow X$ be functions.
(a) Show that if $g(f(x))=x$ for all $x \in X$ and f is surjective, then $f(g(y))=y$ for all $y \in Y$. (So g is the inverse of f and f and g are bijections).
(b) Give an example of functions f and g such that $g(f(x))=x$ for all $x \in X$ but $f(g(y)) \neq y$ for some $y \in Y$.
(26) Let X be a set. What does it mean to say that X is countable? In each of the following cases, determine whether the set is countable. Justify your answer carefully.
(a) $X=\{n \in \mathbb{Z} \mid n \equiv 3 \bmod 5\}$.
(b) $X=\left\{x \in \mathbb{R} \mid(x>0) \operatorname{AND}\left(x^{2} \in \mathbb{Q}\right)\right\}$.
(c) X the set of subsets of \mathbb{N} of size 2 , that is

$$
X=\{\{a, b\} \mid a, b \in \mathbb{N}, a<b\} .
$$

[Hint: use the fact that $\mathbb{N} \times \mathbb{N}$ is countable.]
(d) $X=\mathcal{P}(\mathbb{Q})$, the power set of \mathbb{Q}. [Recall that the power set $\mathcal{P}(Y)$ of a set Y is the set of all subsets of Y.]
(e) X the set of functions $f: \mathbb{N} \rightarrow\{0,1\}$ from the set of positive integers to the set $\{0,1\}$. [Hint: Modify Cantor's diagonal argument.]
(27) Recall that in class we showed that \mathbb{Q} is countable, that is, there is a bijection $f: \mathbb{N} \rightarrow \mathbb{Q}$. Show that there does not exist a bijection $g: \mathbb{N} \rightarrow \mathbb{Q}$ such that $g(a)<g(b)$ when $a<b$.
(28) Let X be the set of all finite subsets of \mathbb{N}. In class we showed that X is countable. Here we will describe another proof of this fact. Define a function $f: X \rightarrow \mathbb{N}$ as follows. Let $p_{1}, p_{2}, p_{3}, \ldots=2,3,5, \ldots$ be the list of prime numbers in increasing order. For $S \in X$, write $S=$ $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ where $a_{1}<a_{2}<\ldots<a_{r}$ and $r=|S|$. We define $f(S)=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$.
(a) Explain why f is injective.
(b) Deduce that X is countable.
(c) Is f surjective?
(29) Find all solutions $z \in \mathbb{C}$ of the following equations.
(a) $z^{2}-6 z+25=0$
(b) $z^{3}=-8 i$.
(c) $z^{4}-2 z^{3}+6 z^{2}-2 z+5=0$, given that $z=i$ is a solution.

