235 Final exam review questions

December 11, 2016

(1) Find the dimension of the subspace spanned by the vectors

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

(2) Find the dimension of the subspace that is the solution set of the equation $A\mathbf{x} = \mathbf{0}$ with

$$A = \begin{bmatrix} 0 & 2 & 4 & 2 \\ 1 & 3 & 7 & 4 \\ 1 & 5 & 11 & 6 \end{bmatrix}$$

- (3) If a 7×4 matrix A has rank 3, find dim Nul A, dim Row A, and rank A^T .
- (4) Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 5 & 4 & 3 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

- (a) i. Find a basis for $Col\ A$.
 - ii. What is the dimension of $Col\ A$?
 - iii. For what value of k is Col A a subspace of \mathbb{R}^k ?
- (b) i. Find a basis for Row A.
 - ii. What is the dimension of Row A?
 - iii. For what value of k is Row A a subspace of \mathbb{R}^k ?
- (c) i. Find a basis for Nul A.

- ii. What is the dimension of Nul A?
- iii. For what value of k is Nul A a subspace of \mathbb{R}^k ?
- (5) Let

$$A = \begin{bmatrix} 3 & 1 \\ 4 & 6 \end{bmatrix}.$$

- (a) Find the eigenvalues of A and the corresponding eigenvectors.
- (b) Is A diagonalizable? If so, write down an invertible matrix P and diagonal matrix D such that $A = PDP^{-1}$.
- (6) Let

$$A = \begin{bmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{bmatrix}$$

- (a) Find the eigenvalues of A and the corresponding eigenvectors.
- (b) Let $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Express \mathbf{v} as a linear combination of the eigenvectors found in part (a).
- (c) Compute the limit $\lim_{n\to\infty} A^n \mathbf{v}$.
- (7) Let

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 5 & 0 \\ -3 & 1 & 5 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) Is A diagonalizable? Justify your answer carefully.
- (8) Let

$$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) For each eigenvalue of A, find a basis for the corresponding eigenspace.
- (c) Is A diagonalizable? If so, write down an invertible matrix P and diagonal matrix D such that $A = PDP^{-1}$.
- (9) Let

$$A = \begin{bmatrix} 2 & 5 \\ -2 & 0 \end{bmatrix}.$$

- (a) Find all the complex eigenvalues of A.
- (b) For each complex eigenvalue of A, find a complex eigenvector corresponding to the eigenvalue.
- (c) Find an invertible matrix P and a rotation-scaling matrix C such that $A = PCP^{-1}$.
- (d) Compute the scaling factor r and the angle of rotation θ for the matrix C found in part (c).
- (10) Let

$$A = \begin{bmatrix} 4 & -2 \\ 5 & -2 \end{bmatrix}.$$

- (a) Find the complex eigenvalues of A and the corresponding complex eigenvectors.
- (b) Find an invertible matrix P and a rotation-scaling matrix C such that $A = PCP^{-1}$.
- (c) Compute the scaling factor r and the angle of rotation θ for the matrix C found in part (b).
- (d) Using your answer to part (c) or otherwise, compute A^{100} .
- (11) Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ be vectors in \mathbb{R}^3 and let \mathbf{u}_3 be a

non-zero vector in \mathbb{R}^3 such that $\mathbf{u}_1 \cdot \mathbf{u}_3 = 0$ and $\mathbf{u}_2 \cdot \mathbf{u}_3 = 0$.

- (a) Explain why the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis of \mathbb{R}^3 . (You may quote a theorem from class or the book.)
- (b) Let the vector $\mathbf{y} = \begin{bmatrix} -5 \\ 5 \\ 5 \end{bmatrix}$ be written in this basis as $\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$. Find c_1 and c_2 .
- (c) Compute the distance from \mathbf{y} to the line spanned by \mathbf{u}_2 .
- (12) (a) Find a unit vector \mathbf{u} in the line through the origin in \mathbb{R}^2 spanned by the vector $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 - (b) Find an orthonormal basis \mathcal{B} of \mathbb{R}^2 which includes the vector \mathbf{u} .
 - (c) Find the \mathcal{B} -coordinate vector $[\mathbf{y}]_{\mathcal{B}}$ of the vector $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.