235 Final exam review questions

December 11, 2016
(1) Find the dimension of the subspace spanned by the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
4 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

(2) Find the dimension of the subspace that is the solution set of the equation $A \mathbf{x}=\mathbf{0}$ with

$$
A=\left[\begin{array}{cccc}
0 & 2 & 4 & 2 \\
1 & 3 & 7 & 4 \\
1 & 5 & 11 & 6
\end{array}\right]
$$

(3) If a 7×4 matrix A has rank 3 , find $\operatorname{dim} \operatorname{Nul} A$, dim Row A, and rank A^{T}.
(4) Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
5 & 4 & 3 & 2 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

(a) i. Find a basis for $\operatorname{Col} A$.
ii. What is the dimension of $\operatorname{Col} A$?
iii. For what value of k is $\operatorname{Col} A$ a subspace of \mathbb{R}^{k} ?
(b) i. Find a basis for Row A.
ii. What is the dimension of Row A ?
iii. For what value of k is Row A a subspace of \mathbb{R}^{k} ?
(c) i. Find a basis for $\operatorname{Nul} A$.
ii. What is the dimension of $\operatorname{Nul} A$?
iii. For what value of k is $\operatorname{Nul} A$ a subspace of \mathbb{R}^{k} ?
(5) Let

$$
A=\left[\begin{array}{ll}
3 & 1 \\
4 & 6
\end{array}\right] .
$$

(a) Find the eigenvalues of A and the corresponding eigenvectors.
(b) Is A diagonalizable? If so, write down an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
(6) Let

$$
A=\left[\begin{array}{ll}
0.8 & 0.6 \\
0.2 & 0.4
\end{array}\right]
$$

(a) Find the eigenvalues of A and the corresponding eigenvectors.
(b) Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Express \mathbf{v} as a linear combination of the eigenvectors found in part (a).
(c) Compute the limit $\lim _{n \rightarrow \infty} A^{n} \mathbf{v}$.
(7) Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 1 \\
0 & 5 & 0 \\
-3 & 1 & 5
\end{array}\right] .
$$

(a) Find the eigenvalues of A.
(b) Is A diagonalizable? Justify your answer carefully.
(8) Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) For each eigenvalue of A, find a basis for the corresponding eigenspace.
(c) Is A diagonalizable? If so, write down an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
(9) Let

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-2 & 0
\end{array}\right] .
$$

(a) Find all the complex eigenvalues of A.
(b) For each complex eigenvalue of A, find a complex eigenvector corresponding to the eigenvalue.
(c) Find an invertible matrix P and a rotation-scaling matrix C such that $A=P C P^{-1}$.
(d) Compute the scaling factor r and the angle of rotation θ for the matrix C found in part (c).
(10) Let

$$
A=\left[\begin{array}{ll}
4 & -2 \\
5 & -2
\end{array}\right] .
$$

(a) Find the complex eigenvalues of A and the corresponding complex eigenvectors.
(b) Find an invertible matrix P and a rotation-scaling matrix C such that $A=P C P^{-1}$.
(c) Compute the scaling factor r and the angle of rotation θ for the matrix C found in part (b).
(d) Using your answer to part (c) or otherwise, compute A^{100}.
(11) Let $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ be vectors in \mathbb{R}^{3} and let \mathbf{u}_{3} be a non-zero vector in \mathbb{R}^{3} such that $\mathbf{u}_{1} \cdot \mathbf{u}_{3}=0$ and $\mathbf{u}_{2} \cdot \mathbf{u}_{3}=0$.
(a) Explain why the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis of \mathbb{R}^{3}. (You may quote a theorem from class or the book.)
(b) Let the vector $\mathbf{y}=\left[\begin{array}{c}-5 \\ 5 \\ 5\end{array}\right]$ be written in this basis as $\mathbf{y}=c_{1} \mathbf{u}_{1}+$ $c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$. Find c_{1} and c_{2}.
(c) Compute the distance from \mathbf{y} to the line spanned by \mathbf{u}_{2}.
(12) (a) Find a unit vector \mathbf{u} in the line through the origin in \mathbb{R}^{2} spanned by the vector $\mathbf{v}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
(b) Find an orthonormal basis \mathcal{B} of \mathbb{R}^{2} which includes the vector \mathbf{u}.
(c) Find the \mathcal{B}-coordinate vector $[\mathbf{y}]_{\mathcal{B}}$ of the vector $\mathbf{y}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

