Math 235 Syllabus Fall 2013

Paul Hacking

August 28, 2013

Numbers refer to the course text Bretscher, Linear algebra with applications, 5th ed.

- (1.1) Introduction to linear systems: Solving systems of linear equations, geometric interpretation, number of solutions.
- (1.2) Matrices, Vectors, and Gauss-Jordan elimination: Matrix and vector notation, Gaussian elimination. Reduced row echelon form of a matrix.
- (1.3) Solutions of linear systems; Matrix algebra: Number of solutions of a linear system. Dot product $\mathbf{x} \cdot \mathbf{y}$ of vectors. Linear combinations of vectors, product $A\mathbf{x}$ of a matrix A and a vector \mathbf{x} . Matrix form $A\mathbf{x} = \mathbf{b}$ of linear system. Rank of a matrix in terms of its row echelon form.
- (2.1) Linear transformations and their inverses: The linear transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m, \quad T(\mathbf{x}) = A\mathbf{x},$$

associated to a $m \times n$ matrix A. The columns of A are the vectors $T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)$ (the images of the standard basis vectors under T). A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear iff $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and $T(c\mathbf{x}) = cT(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

- (2.2) Linear transformations in geometry: Scaling, reflection, rotation, orthogonal projection, shears.
- (2.3) Matrix product: Definition of matrix product AB. The matrix product corresponds to composition of linear transformations. Matrix multiplication is not commutative $(AB \neq BA \text{ in general})$, but is associative (A(BC) = (AB)C) and satisfies the distributive laws.

(2.4) Inverse of a linear transformation: Inverse of a function in general. If a matrix is invertible then it is square. An $n \times n$ matrix is invertible if and only if $\operatorname{rank}(A) = n$. Computation of the inverse of an $n \times n$ matrix A using row operations applied to the $n \times 2n$ matrix (AI). Inverse of a product: $(AB)^{-1} = B^{-1}A^{-1}$. Inverse of a 2×2 matrix: the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible iff the determinant $\det A := ad - bc$ is nonzero, and then

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

- (3.1) Image and kernel of a linear transformation: Image of a function in general. Span of a set of vectors. The image of the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\mathbf{x}) = A\mathbf{x}$ is the span of the columns of the matrix A. Definition of the kernel of a linear transformation. $T(\mathbf{x}) = T(\mathbf{y})$ iff $\mathbf{x} \mathbf{y}$ lies in the kernel.
- (3.2) Subspaces of \mathbb{R}^n ; Bases and linear independence: Definition of a subspace of \mathbb{R}^n . Examples and non-examples. For a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ the kernel is a subspace of the domain \mathbb{R}^n and the image is a subspace of the codomain \mathbb{R}^m . Linearly independent sets. Basis of a subspace. Unique representation of elements of a subspace in terms of a basis. Computation of a basis of the kernel and image of a linear transformation from the row echelon form of the corresponding matrix.
- (3.3) The dimension of a subspace of \mathbb{R}^n : Two bases of a subspace have the same number of elements. Dimension of a subspace. The rank of a matrix A is the dimension of the image of the associated linear transformation. The rank–nullity theorem.
- (3.4) Coordinates: Coordinates of a vector $\mathbf{x} \in \mathbb{R}^n$ with respect to a basis \mathcal{B} of \mathbb{R}^n . Matrix of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ with respect to a basis \mathcal{B} of \mathbb{R}^n . Similar matrices.
- (4.1) Linear spaces (Vector spaces): Definition of a vector space. Examples. Generalization of notions from subspaces of \mathbb{R}^n to general vector spaces. Infinite dimensional vector spaces.

- (4.2) Linear transformations and isomorphisms: Generalizations of notions from linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ to linear transformations of vector spaces $T: V \to W$. Criteria for $T: V \to W$ to be an isomorphism in terms of dim V, dim W, rank(T), and ker(T).
- (4.3) The matrix of a linear transformation: Matrix of a linear transformation $T: V \to V$ from a vector space V to itself with respect to a basis \mathcal{B} of V. Change of basis.
- (6.1) Introduction to determinants: Elementary computation of 3×3 determinant. Definition of $n \times n$ determinants via patterns (permutations). Determinant of a triangular matrix.
- (6.2) Properties of the determinant: The transpose A^T of a matrix A. $\det(A^T) = \det(A)$. Linearity of the determinant in the rows and columns. Computation of determinant via row and column operations. $\det(AB) = \det(A)\det(B)$. A square matrix A is invertible iff $\det(A) \neq 0$.
- (6.3) Geometrical interpretation of the determinant; Cramer's rule: Geometric interpretation of the determinant of an $n \times n$ matrix for n = 2 and n = 3.
- (7.1) *Diagonalization*: Eigenvectors, eigenvalues, and diagonalization. Examples.
- (7.2) Finding the eigenvalues of a matrix: The characteristic equation

$$\det(A - \lambda I) = 0.$$

- The 2×2 case. (The trace of a matrix.) Eigenvalues of a triangular matrix. The algebraic multiplicity of an eigenvalue.
- (7.3) Finding the eigenvectors of a matrix: The eigenspace associated to an eigenvalue. The geometric multiplicity of an eigenvalue. The geometric multiplicity is less than or equal to the algebraic multiplicity. An $n \times n$ matrix A is diagonalizable iff there is a basis of \mathbb{R}^n consisting of eigenvectors of A. Algorithm for diagonalization of a matrix.
- (7.4) More on dynamical systems: Computing powers of a matrix via diagonalization.

- (7.5) Complex eigenvalues: Complex numbers. Polar form and geometric interpretation of multiplication. Complex eigenvalues and eigenvectors. A 2×2 matrix with complex eigenvalues is similar to a rotation-scaling matrix. Fundamental theorem of algebra (statement only). The number of complex eigenvalues (counted with algebraic multiplicities) of an $n \times n$ matrix A equals n.
- (5.1) Orthogonal projections and orthonormal bases: Orthogonal vectors in \mathbb{R}^n . Orthonormal bases. Orthogonal projection onto a subspace.
- (5.2) Gram-Schmidt process and QR factorization: Gram-Schmidt construction of an orthonormal basis of a subspace of \mathbb{R}^n .