Math 235 Syllabus Fall 2013

Paul Hacking

August 28, 2013

Numbers refer to the course text Bretscher, Linear algebra with applications, 5th ed.
(1.1) Introduction to linear systems: Solving systems of linear equations, geometric interpretation, number of solutions.
(1.2) Matrices, Vectors, and Gauss-Jordan elimination: Matrix and vector notation, Gaussian elimination. Reduced row echelon form of a matrix.
(1.3) Solutions of linear systems; Matrix algebra: Number of solutions of a linear system. Dot product $\mathbf{x} \cdot \mathbf{y}$ of vectors. Linear combinations of vectors, product $A \mathbf{x}$ of a matrix A and a vector \mathbf{x}. Matrix form $A \mathbf{x}=\mathbf{b}$ of linear system. Rank of a matrix in terms of its row echelon form.
(2.1) Linear transformations and their inverses: The linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad T(\mathbf{x})=A \mathbf{x}
$$

associated to a $m \times n$ matrix A. The columns of A are the vectors $T\left(\mathbf{e}_{1}\right), \ldots, T\left(\mathbf{e}_{n}\right)$ (the images of the standard basis vectors under T). A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear iff $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$ and $T(c \mathbf{x})=c T(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.
(2.2) Linear transformations in geometry: Scaling, reflection, rotation, orthogonal projection, shears.
(2.3) Matrix product: Definition of matrix product $A B$. The matrix product corresponds to composition of linear transformations. Matrix multiplication is not commutative ($A B \neq B A$ in general), but is associative $(A(B C)=(A B) C)$ and satisfies the distributive laws.
(2.4) Inverse of a linear transformation: Inverse of a function in general. If a matrix is invertible then it is square. An $n \times n$ matrix is invertible if and only if $\operatorname{rank}(A)=n$. Computation of the inverse of an $n \times n$ matrix A using row operations applied to the $n \times 2 n$ matrix $(A I)$. Inverse of a product: $(A B)^{-1}=B^{-1} A^{-1}$. Inverse of a 2×2 matrix: the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible iff the determinant $\operatorname{det} A:=a d-b c$ is nonzero, and then

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

(3.1) Image and kernel of a linear transformation: Image of a function in general. Span of a set of vectors. The image of the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\mathbf{x})=A \mathbf{x}$ is the span of the columns of the matrix A. Definition of the kernel of a linear transformation. $T(\mathbf{x})=T(\mathbf{y})$ iff $\mathbf{x}-\mathbf{y}$ lies in the kernel.
(3.2) Subspaces of \mathbb{R}^{n}; Bases and linear independence: Definition of a subspace of \mathbb{R}^{n}. Examples and non-examples. For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the kernel is a subspace of the domain \mathbb{R}^{n} and the image is a subspace of the codomain \mathbb{R}^{m}. Linearly independent sets. Basis of a subspace. Unique representation of elements of a subspace in terms of a basis. Computation of a basis of the kernel and image of a linear transformation from the row echelon form of the corresponding matrix.
(3.3) The dimension of a subspace of \mathbb{R}^{n} : Two bases of a subspace have the same number of elements. Dimension of a subspace. The rank of a matrix A is the dimension of the image of the associated linear transformation. The rank-nullity theorem.
(3.4) Coordinates: Coordinates of a vector $\mathbf{x} \in \mathbb{R}^{n}$ with respect to a basis \mathcal{B} of \mathbb{R}^{n}. Matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to a basis \mathcal{B} of \mathbb{R}^{n}. Similar matrices.
(4.1) Linear spaces (Vector spaces): Definition of a vector space. Examples. Generalization of notions from subspaces of \mathbb{R}^{n} to general vector spaces. Infinite dimensional vector spaces.
(4.2) Linear transformations and isomorphisms: Generalizations of notions from linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to linear transformations of vector spaces $T: V \rightarrow W$. Criteria for $T: V \rightarrow W$ to be an isomorphism in terms of $\operatorname{dim} V, \operatorname{dim} W, \operatorname{rank}(T)$, and $\operatorname{ker}(T)$.
(4.3) The matrix of a linear transformation: Matrix of a linear transformation $T: V \rightarrow V$ from a vector space V to itself with respect to a basis \mathcal{B} of V. Change of basis.
(6.1) Introduction to determinants: Elementary computation of 3×3 determinant. Definition of $n \times n$ determinants via patterns (permutations). Determinant of a triangular matrix.
(6.2) Properties of the determinant: The transpose A^{T} of a matrix $A \cdot \operatorname{det}\left(A^{T}\right)=$ $\operatorname{det}(A)$. Linearity of the determinant in the rows and columns. Computation of determinant via row and column operations. $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$. A square matrix A is invertible iff $\operatorname{det}(A) \neq 0$.
(6.3) Geometrical interpretation of the determinant; Cramer's rule: Geometric interpretation of the determinant of an $n \times n$ matrix for $n=2$ and $n=3$.
(7.1) Diagonalization: Eigenvectors, eigenvalues, and diagonalization. Examples.
(7.2) Finding the eigenvalues of a matrix: The characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

The 2×2 case. (The trace of a matrix.) Eigenvalues of a triangular matrix. The algebraic multiplicity of an eigenvalue.
(7.3) Finding the eigenvectors of a matrix: The eigenspace associated to an eigenvalue. The geometric multiplicity of an eigenvalue. The geometric multiplicity is less than or equal to the algebraic multiplicity. An $n \times$ n matrix A is diagonalizable iff there is a basis of \mathbb{R}^{n} consisting of eigenvectors of A. Algorithm for diagonalization of a matrix.
(7.4) More on dynamical systems: Computing powers of a matrix via diagonalization.
(7.5) Complex eigenvalues: Complex numbers. Polar form and geometric interpretation of multiplication. Complex eigenvalues and eigenvectors. A 2×2 matrix with complex eigenvalues is similar to a rotation-scaling matrix. Fundamental theorem of algebra (statement only). The number of complex eigenvalues (counted with algebraic multiplicities) of an $n \times n$ matrix A equals n.
(5.1) Orthogonal projections and orthonormal bases: Orthogonal vectors in \mathbb{R}^{n}. Orthonormal bases. Orthogonal projection onto a subspace.
(5.2) Gram-Schmidt process and $Q R$ factorization: Gram-Schmidt construction of an orthonormal basis of a subspace of \mathbb{R}^{n}.

