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Numbers refer to the course text Bretscher, Linear algebra with applica-
tions, 5th ed.

(1.1) Introduction to linear systems : Solving systems of linear equations,
geometric interpretation, number of solutions.

(1.2) Matrices, Vectors, and Gauss-Jordan elimination: Matrix and vector
notation, Gaussian elimination. Reduced row echelon form of a matrix.

(1.3) Solutions of linear systems; Matrix algebra: Number of solutions of
a linear system. Dot product x · y of vectors. Linear combinations of
vectors, product Ax of a matrix A and a vector x. Matrix form Ax = b
of linear system. Rank of a matrix in terms of its row echelon form.

(2.1) Linear transformations and their inverses : The linear transformation

T : Rn → Rm, T (x) = Ax,

associated to a m × n matrix A. The columns of A are the vectors
T (e1), . . . , T (en) (the images of the standard basis vectors under T ).
A function T : Rn → Rm is linear iff T (x + y) = T (x) + T (y) and
T (cx) = cT (x) for all x,y ∈ Rn and c ∈ R.

(2.2) Linear transformations in geometry : Scaling, reflection, rotation, or-
thogonal projection, shears.

(2.3) Matrix product : Definition of matrix product AB. The matrix product
corresponds to composition of linear transformations. Matrix multipli-
cation is not commutative (AB 6= BA in general), but is associative
(A(BC) = (AB)C) and satisfies the distributive laws.
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(2.4) Inverse of a linear transformation: Inverse of a function in general. If
a matrix is invertible then it is square. An n × n matrix is invertible
if and only if rank(A) = n. Computation of the inverse of an n × n
matrix A using row operations applied to the n × 2n matrix (AI).
Inverse of a product: (AB)−1 = B−1A−1. Inverse of a 2×2 matrix: the

matrix A =

(
a b
c d

)
is invertible iff the determinant detA := ad − bc

is nonzero, and then

A−1 =
1

detA

(
d −b
−c a

)
.

(3.1) Image and kernel of a linear transformation: Image of a function in
general. Span of a set of vectors. The image of the linear transformation
T : Rn → Rm, T (x) = Ax is the span of the columns of the matrix A.
Definition of the kernel of a linear transformation. T (x) = T (y) iff
x− y lies in the kernel.

(3.2) Subspaces of Rn; Bases and linear independence: Definition of a sub-
space of Rn. Examples and non-examples. For a linear transformation
T : Rn → Rm the kernel is a subspace of the domain Rn and the image
is a subspace of the codomain Rm. Linearly independent sets. Basis of
a subspace. Unique representation of elements of a subspace in terms
of a basis. Computation of a basis of the kernel and image of a linear
transformation from the row echelon form of the corresponding matrix.

(3.3) The dimension of a subspace of Rn: Two bases of a subspace have
the same number of elements. Dimension of a subspace. The rank
of a matrix A is the dimension of the image of the associated linear
transformation. The rank–nullity theorem.

(3.4) Coordinates : Coordinates of a vector x ∈ Rn with respect to a basis B
of Rn. Matrix of a linear transformation T : Rn → Rn with respect to
a basis B of Rn. Similar matrices.

(4.1) Linear spaces (Vector spaces): Definition of a vector space. Examples.
Generalization of notions from subspaces of Rn to general vector spaces.
Infinite dimensional vector spaces.
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(4.2) Linear transformations and isomorphisms : Generalizations of notions
from linear transformations T : Rn → Rm to linear transformations of
vector spaces T : V → W . Criteria for T : V → W to be an isomor-
phism in terms of dimV , dimW , rank(T ), and ker(T ).

(4.3) The matrix of a linear transformation: Matrix of a linear transforma-
tion T : V → V from a vector space V to itself with respect to a basis
B of V . Change of basis.

(6.1) Introduction to determinants : Elementary computation of 3× 3 deter-
minant. Definition of n× n determinants via patterns (permutations).
Determinant of a triangular matrix.

(6.2) Properties of the determinant : The transposeAT of a matrixA. det(AT ) =
det(A). Linearity of the determinant in the rows and columns. Com-
putation of determinant via row and column operations. det(AB) =
det(A) det(B). A square matrix A is invertible iff det(A) 6= 0.

(6.3) Geometrical interpretation of the determinant; Cramer’s rule: Geomet-
ric interpretation of the determinant of an n× n matrix for n = 2 and
n = 3.

(7.1) Diagonalization: Eigenvectors, eigenvalues, and diagonalization. Ex-
amples.

(7.2) Finding the eigenvalues of a matrix : The characteristic equation

det(A− λI) = 0.

The 2 × 2 case. (The trace of a matrix.) Eigenvalues of a triangular
matrix. The algebraic multiplicity of an eigenvalue.

(7.3) Finding the eigenvectors of a matrix : The eigenspace associated to an
eigenvalue. The geometric multiplicity of an eigenvalue. The geometric
multiplicity is less than or equal to the algebraic multiplicity. An n×
n matrix A is diagonalizable iff there is a basis of Rn consisting of
eigenvectors of A. Algorithm for diagonalization of a matrix.

(7.4) More on dynamical systems : Computing powers of a matrix via diag-
onalization.
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(7.5) Complex eigenvalues : Complex numbers. Polar form and geometric in-
terpretation of multiplication. Complex eigenvalues and eigenvectors.
A 2×2 matrix with complex eigenvalues is similar to a rotation-scaling
matrix. Fundamental theorem of algebra (statement only). The num-
ber of complex eigenvalues (counted with algebraic multiplicities) of an
n× n matrix A equals n.

(5.1) Orthogonal projections and orthonormal bases : Orthogonal vectors in
Rn. Orthonormal bases. Orthogonal projection onto a subspace.

(5.2) Gram–Schmidt process and QR factorization: Gram–Schmidt construc-
tion of an orthonormal basis of a subspace of Rn.
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