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1. INTRODUCTION

These are notes from a talk of the same name given to the PROMYS program
on August 6, 2004. The target audience was advanced high-school students, but
others also might find the material interesting. The lecture was an elaboration on
a chapter in the excellent book Essays on numbers and figures by V. V. Prasolov [2],
and the interested reader should look there for more information.

2. DIOPHANTINE EQUATIONS

A Diophantine equation is a polynomial equation in variables x, y, z, . . . with ra-
tional or integral coefficients. What makes such an equation Diophantine is that
one puts restrictions on acceptable solutions: given such an equation, one only
wants its rational or even integral solutions. Here are some examples.

(1) A standard example is the Pythagorean equation x2 + y2 = z2. Integral so-
lutions (x, y, z) are called Pythagorean triples, because they correspond to
right triangles whose sides are whole numbers. For example, we have the
standard “SAT” triangles (3,4,5) and (5,12,13). This equation is completely
understood: in number theory courses one proves that all solutions have
the form (m2 − n2, 2mn, m2 + n2), where m, n are integers.

(2) The generalization of the Pythagorean equation xn + yn = zn, n > 2 is
called the Fermat equation. This equation is a bit more challenging. Indeed,
many of the great advances in modern number theory arose out of (failed)
attempts to show that there are no solutions to this equation! Today, thanks
to the efforts of many mathematicians, we now know that the only integral
solutions are the trivial ones, in which at least one of x, y, z is 0.

(3) Those two examples were at the extreme ends of the Diophantine spectrum.
How about something in between? Consider the equation x2 − 2y2 = 1.
This is an example of Pell’s equation1 The general Pell’s equation has the
form x2−Dy2 = 1, where D > 0 is a integer that is not a square. As with the
Pythagorean equation, we know how to find all the solutions. In the case

Date: August 13, 2004.
1Apparently this is a completely misnamed equation . . . Pell was only marginally involved.
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of D = 2, one chooses an integer k 6= 0 and multiplies out (1−
√

2)k. The
answer will have the form a + b

√
2 for a, b integers, and (a, b) is a solution to

the equation. What’s going on here is more subtle than for the Pythagorean
equation, but it’s still accessible in a beginning number theory course.

(4) Here’s a more interesting problem that’s still easier to deal with than Fer-
mat. When is a product of two consecutive integers equal to a product
of three consecutive integers? If we translate this into algebra2 we get
y(y + 1) = (x − 1)x(x + 1) or y2 + y = x3 − x. This is an example of an
elliptic curve; such objects figure prominently in the proof of Fermat’s last
theorem. It turns out that there are infinitely many rational solutions to this
equation, but a theorem of Siegel says that there are at most finitely many
integral solutions. This is the first example where there is a difference be-
tween the qualitative nature of integral and rational solutions, but it’s not
the only one. For this particular equation, everything about the rational
solutions are understood. One starts with the solution (0, 0), and through
a geometric procedure (the “group law” of the elliptic curve) one can build
all other rational solutions.

3. POLYNOMIALS AS NUMBERS

Number theorists aren’t squeamish about what mathematical techniques they
use to solve problems. Analysis, algebra, geometry, topology, representation the-
ory, whatever . . . we don’t care, as long as we get results. A guiding force is analogy:
if you can’t solve the problem you want, try to solve an analogous but easier one.
Even if the analogy looks completely crazy, and takes the problem into a com-
pletely different domain, the solution might shed light on the original problem.

This is the idea we want to develop. We want to discuss the idea that

the set of integers Z

is analogous to

the set C[z] of complex polynomials in one complex variable z.

Now this might seem kind of strange. After all, a polynomial is not the same thing
as a number, right? For example, we can evaluate a polynomial at an integer, so
somehow a polynomial is an object that’s further up the food chain than an integer.
That’s certainly true, but this is missing the spirit of our game. Instead we should
think of ways that polynomials and integers are similar.

(1) For example, we can add and subtract integers and don’t leave the world
of integers. The same is true for complex polynomials.

2It’s traditional to write the three consecutive numbers as x− 1, x, x + 1 instead of x, x + 1, x + 2.
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(2) We can multiply two integers and obtain an integer. Ditto for complex poly-
nomials.

(3) What about division? Well, we can’t always divide one integer into an-
other (e.g. 3/2 is not an integer). This is also true for polynomials (e.g.
(z + 1)/(z − 1) is not a polynomial), and is the first indication that maybe
our analogy isn’t so crazy after all. There are some integers n such that
1/n is an integer, namely n = ±1. We call such integers units. And the
same is true for polynomials: the only polynomials f (z) such that 1/ f (z)
is a polynomial are the nonzero constant polynomials. We’ll also call them
units.

(4) How about something fancier, like prime numbers? An positive integer p is
called prime if q > 0 divides p implies q = p or q = 1. We can extend this to
negative integers by saying that p is a prime if it’s only divisible by numbers
of the form εp, where ε = ±1 is a unit. Now the notion of divisibility makes
sense for polynomials, so we can just define a prime polynomial f (z) to be
one whose only divisors are c f (z), where c is a unit. Since every polynomial
over the complex numbers completely factors into linear terms (i.e. all the
roots of the polynomial can be found using the complex numbers), we see
that a polynomial is prime if and only if it has degree one. From this we
can see that the fundamental theorem of algebra becomes in this language the
fundamental theorem of arithmetic: each polynomial can be factored into a
product of prime polynomials, uniquely up to permutation of the factors
and multiplication by units.

These facts indicate that our analogy isn’t so bad. Since addition, subtraction,
and multiplication make sense for polynomials, we can take any polynomial equa-
tion (e.g. the Fermat equation) and can plug polynomials into the variables. In
other words, we can try to find polynomial solutions to our Diophantine equataions.
This is what we’ll do in the following sections.

4. MASON’S THEOREM AND FERMAT’S LAST THEOREM

The basic tool we’ll use is called Mason’s theorem, or the ABC theorem for poly-
nomials. It’s a severe restriction on the degrees of polynomials that can appear in
linear equations.

Theorem 1. (Mason) Suppose a, b, c ∈ C[z] are pairwise relatively prime complex poly-
nomials3, and at least one of a, b, c is not constant. Let N0 be the number of distinct roots
of the product abc. Then if a + b + c = 0, we have

deg a, deg b, deg c ≤ N0 − 1.

3This means that any two of them have no common roots.
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In other words, the theorem says that if you can add together three polyno-
mials a, b, c and get zero, and if these polynomials have no common roots, then
the degrees of each of them can’t be too big when compared to the number of
distinct roots in the product abc. Note also that N0 is as big as possible when
each polynomial has only simple roots (i.e. in the factorization into distinct factors
a(z) = c(z− α1)e1 · · · (z− αk)ek , all exponents are 1), and in this case N0 = deg(abc).
You can try some simple examples to convince yourself of the truth of the theorem
(always a good idea when you learn a new theorem). We won’t give the proof
here. It’s not hard, but is best read and appreciated on one’s own. A complete
proof is given in [2, Ch. 15].

To see how powerful Theorem 1 is, let’s dispense with Fermat’s last theorem.

Theorem 2. Let n ≥ 2 be an integer, and suppose a, b, c ∈ C[z] are pairwise relatively
prime polynomials, at least one of which is not a constant, satisfying an + bn = cn. Then
n = 2.

Proof. Suppose a, b, c is a solution, and let A = an, B = bn, C = cn. Then, after
multiplying by units, we achieve A + B + C = 0. Since deg A = n deg a, etc., we
obtain

n deg a, n deg b, n deg c ≤ N0 − 1,
where N0 is the number of distinct zeros of ABC. But N0 ≤ deg a + deg b + deg c
(why?), so

n deg a, n deg b, n deg c ≤ deg a + deg b + deg c− 1.
This is really three separate inequalities. If we add them together, we get

n(deg a + deg b + deg c) ≤ 3(deg a + deg b + deg c)− 3 < 3(deg a + deg b + deg c),

and hence n < 3. �

Well, that was easy. It almost seems too easy, but it’s a correct proof. The point is
that Mason’s theorem, although it doesn’t look like much, is very restrictive. Now
we can see the power of analogy. Immediately one wonders, what’s the analogue
of Theorem 1 for integers, and can it be used to attack FLT? We’ll talk about this in
Section 7; you can skip ahead if you like.

Note that the proof of Theorem 2 doesn’t show that there are any solutions to
the Fermat equation in polynomials for n = 2, just that it’s only possible to have a
solution if n = 2. But solutions do exists for n = 2: simply take the basic solution
in integers (m2− n2, 2mn, m2 + n2) and replace m, n with any polynomials you like.
You can check that the Fermat equation will be satisfied.

5. A GENERALIZATION OF FERMAT

How about a generalization of Fermat’s last theorem, in which the three expo-
nents are allowed to be arbitrary positive integers?
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Theorem 3. Suppose a, b, c ∈ C[z] are pairwise relatively prime polynomials, at least one
of which is not a constant, satisfying ap + bq = cr, where 2 ≤ p ≤ q ≤ r. Then (p, q, r)
must be one of

(1) (2, 2, r), r ≥ 2,
(2) (2, 3, 3),
(3) (2, 3, 4),
(4) (2, 3, 5).

This sounds much more difficult than Fermat, but it too can be handled easily
with Mason’s theorem.

Proof. (Sketch) We only prove that p = 2 and q ≤ 3. Let α = deg a, β = deg b,
γ = deg c. Again N0 ≤ α + β + γ, so we have the three inequalities

pα ≤ α + β + γ− 1,(1)
qβ ≤ α + β + γ− 1,(2)
rγ ≤ α + β + γ− 1,(3)

Now p(α + β + γ) ≤ pα + qβ + rγ, so if we add all three inequalities together we
get

p(α + β + γ) ≤ 3(α + β + γ− 1) =⇒ p = 2.
Since p = 2, (1) becomes

(4) α ≤ β + γ− 1.

Now (2),(3),(4), together with q ≤ r, give

q(β + γ) ≤ α + 3β + 3γ− 3.

If we plug in (4) again, we get

q < 4 =⇒ q = 2, 3.

We have to show r ≤ 5 if q = 3. This is very similar to the argument used to show
q ≤ 4. Simply put q = 3 in (2), and then use the result with (4) a few times. �

Just like with Theorem 2, the proof of Theorem 3 doesn’t show that solutions
actually exist for the indicated (p, q, r), but they do. For example, we have the
identity (

xr + 1
2

)2

−
(

xr − 1
2

)2

= xr,

which shows that (2, 2, r) has solutions. There are solutions as well for the three
exceptional cases (2, 3, 3), (2, 3, 4), (2, 3, 5), but they are more involved (cf. [2]).

Here is a geometric interpretations of Theorem 3. Suppose we fix (p, q, r), and
consider the inequalites (1)–(3). Consider α, β, γ to be variables instead of integers.
Then we can draw the graphs of (1)–(3) in three-dimensional space R3, where the
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coordinates are labelled α, β, γ instead of x, y, z. The result is three “half-spaces,”
that is, three solid regions in R3 bounded on one side by a plane. The intersection
of these three half-spaces determines a region, which may in fact be empty. A point
(α, β, γ) in this region corresponds to a triple of degrees if and only if it lies in the
integer lattice Z3 ⊂ R3 and its coordinates are nonnegative. The nonnegativity
conditions give us three more half-spaces, so altogher we have six inequalties

pα ≤ α + β + γ− 1,
qβ ≤ α + β + γ− 1,
rγ ≤ α + β + γ− 1,

α ≥ 0,
β ≥ 0,
γ ≥ 0,

in the variables α, β, γ. These six inequalities determine a region R(p, q, r). For
example, suppose p = q = r = 2. Then R(2, 2, 2) is a triangular cone with vertex
at (1, 1, 1), and with face angles π/3 (Figure 1).

We can have solutions to our original diophantine equation only if R(p, q, r)
contains nontrivial lattice points, so our question becomes, for which (p, q, r) does
R(p, q, r) contain at least one integral point? From Figure 1, it’s clear that R(2, 2, 2)
contains infinitely many lattice points, since it’s an infinite region, the apex is an
integral point, and the defining rays are rational.4 It turns out that R(p, q, r) is
infinite if and only if (p, q, r) is taken from the list in Theorem 3, and in all other
cases is empty! And certainly an empty region contains no lattice points.

(1,1,1)

π/3

FIGURE 1.

4Conditions like these are essential. Consider for instance the ray ρ with tail at the origin in R2

and going through the point (π, 1). The origin is the only nontrivial lattice point on ρ, precisely
because π is irrational.
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6. THE ADE PATTERN

There is another geometric interpretation of the list of triples in Theorem 3 that
involves the Platonic solids, otherwise known as the regular polyhedra in three di-
mensions. They are the tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron (Figure 2).

FIGURE 2. Platonic solids

The connection is very simple. Take a regular polyhedron P, and add a vertex at
the midpoint of every edge and the center of each face. Join these new vertices to-
gether so that the center of each face gets joined radially to the original vertices and
the midpoints of the neighboring edges. Hence each face will become subdivided
into triangles; if the original face had n sides, it will now contain 2n triangles. This
operation is called barycentric subdivision.

Now imagine that each polyhedron is made of airtight flexible material, like
rubber or latex. Inflate each polyhedron until it becomes round. The result is a
sphere tiled with congruent spherical triangles.5 Something remarkable happens:

• Even though there were five solids to begin with, we only obtain three dif-
ferent tiled spheres: the cube/octahedron and dodecahedron/icosahedron
each become the same tiled sphere.

• The angles of the triangular tiles are (π/p, π/q, π/r), where (p, q, r) is one
of (2, 3, 3), (2, 3, 4), (2, 3, 5).

Hence the “exceptional triples” (the ones not contained in the infinite family
(2, 2, r)) can be understood in terms of the Platonic solids! There is also a geo-
metric explanation of (2, 2, r) in the same spirit. Take a regular polygon with r
sides, subdivide each of its edges, then build a “double pyramid” over it. In other
words, attach two pyramids, one on the top and one on the bottom. The result

5There is a notion of geometry on a sphere very similar to that of the usual Euclidean geometry.
A “line” is defined to be a great circle on the sphere, i.e. a circle on the surface with center the same
as that of the sphere. On the earth, for instance, the equator and lines of longitude are examples
of great circles. Hence there is a well defined notion of spherical triangles. In fact, there is even
a version of trigonometry for the sphere, called (what else?) spherical trigonometry. Courses in
spherical trigonometry are taught to future navigators at maritime academies.
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is a solid with 4r triangular faces, each with angles (π/2, π/2, π/r). This isn’t
a regular polyhedron (it’s not symmetric enough to earn that title), but in some
sense it’s a three-dimensional solid generated by a regular polygon, which is the
two-dimensional “Platonic polygon.” So the solutions (2, 2, r) can be seen to be a
part of the same geometric picture.

It’s very bizarre that there’s any connection at all between our original equation
and regular polyhedra. Is there any explanation? Well, there’s not really an expla-
nation that most people would accept as one, i.e. some kind of justification that
explains why this should happen. All we can say is that we set out to perform a
classification of some objects, and the answers ended up being the same. What’s
even more bizarre is that this phenomenon occurs in mathematics over and over
again, with essentially the same objects as answers.

Let’s try to be more specific, while being as vague as possible. In various con-
texts certain mathematical objects are defined. These contexts are very diverse,
and usually have no apparent relationship to each other. Properities and struc-
tures of the basic objects are explored and organized in lists (theorems, proposi-
tions, lemmas, etc.). Sometimes one attempts to classify the objects, i.e. to use
the accumulated knowledge to understand completely the set of possible objects.
The surprising discovery has been that if this is possible, i.e. if the set of objects
is tractable, then usually it ends up being “the same” as the set of Platonic solids.6

This is called the ADE pattern, because after the work of Cartan and Killing on
simple complex Lie7 algebras, a certain notational scheme was standardized. Why
does this happen? To the best of our knowledge no one knows.

7. THE ABC CONJECTURE

Let’s return to number theory after this detour through geometry. Recall that
we were originally interested in Diophantine equations over the integers and ra-
tional numbers, and that we decided to look at the same equations over complex
polynomials to gain insight. Did we get any?

Perhaps the main insight is that Mason’s theorem is extremely powerful. With
it in hand, we were able to derive Fermat’s last theorem with essentially no work.
This makes us ask, what is the analogue of Mason’s theorem for integers, and is
it true? To answer this, we have to reverse-engineer our integers → polynomials
analogy. In other words, what appears in the statement of Mason’s theorem, and
what is the analogous concept for integers?

The main ingredient we have to worry about is the degree of a polynomial.
What properties does it have? Well, in some sense the degree is a measure of
size: deg f > deg g intuitively means that f is bigger than g. Also, deg f g =

6Including of course their higher dimensional analogues, cf. [1].
7rhymes with free, not die.
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deg f + deg g, which fits well with this. The degree is also the number of linear
factors of a polynomial, and since a linear polynomial is prime, this suggests that
the “degree” of an integer should have something to do with the number of its
prime divisors. But “number of prime divisors” isn’t the right definition: different
primes are different sizes, whereas degree one polynomials all have the same size.

To work our way out of this, we take the analogue of degree to be the absolute
value |n|. Clearly this is a measure of the size of n. The additive formula deg f g =
deg f + deg g gets replaced by a multiplicative one |mn| = |m||n|. For an analogue
of N0( f ) we take the radical rad n of n, defined to be the product over all distinct
primes that divide n. For example, rad 2 = rad 8 = 2, and rad 6 = rad 12 = 6.

Conjecture 1 (ABC conjecture). Suppose a, b, c are three pairwise relatively prime inte-
gers with a + b + c = 0. Then for every ε > 0 there exists a constant Cε such that

|a|, |b|, |c| ≤ Cε| rad(abc)|1+ε.

Here’s how to interpret the ε, Cε business. The cleanest statement possible would
be

(5) |a|, |b|, |c| ≤ | rad(abc)|,
but in practice this appears to be too strong. We’d like to adjust (5) so that the
right hand is a little bigger that the left. This can be done by scaling the right by
a constant and raising the radical to a power > 1. It turns out that the best way
to do this is to first choose the power you want, and then modify the constant
accordingly. So if one picks a big ε, say ε = 1. then the left will be much smaller in
general then rad(abc)2, so we can take a small Cε. But if one takes ε very very tiny,
like 10−23, then this is ok, but one is forced to choose Cε to be very big. In other
words, we can get as close to the pure statement (5) as we want, at the expense of
multiplying the right by bigger and bigger constants. What’s amazing about the
statement of Conjecture 1 is that once one picks ε, there is supposed to be a Cε that
will work for every a, b, c.

Given the ABC conjecture, one can prove many theorems in number theory that
look very difficult without it, for example Fermat’s last theorem for sufficiently
large exponents. Unfortunately, we don’t know if the ABC conjecture is true or
not.8 Opinions vary about whether or not it’s likely to be true. The appearance
of ε, Cε means that it’s impossible to check computationally: if one were to find a
counterexample, couldn’t it be that Cε was chosen poorly?

Finally, we should mention something about the proof of Mason’s theorem. We
didn’t describe it in detail here, but it makes sense to contemplate why we can
prove Theorem 1 but can’t prove Conjecture 1. What is so special about polyno-
mials? The answer: you can differentiate polynomials, and this is an essential

8(Summer 2004) There are rumors that it has been proved.
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ingredient in the proof of Theorem 1. Hence ultimately our analogy breaks down.
Polynomials really are different from integers.
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