Stat 525 Regression Analysis

Lecture 2 : Inferences in Regression and Correlation Analysis

Zheni Utic, utic@math.umass.edu Department of Mathematics and Statistics, University of Massachusetts Amherst

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

• Simple Linear Regression Model, $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

 $\cdot \beta_0$ is the intercept of the line which is the mean of the conditional probability distribution of *Y* at *X* = 0

 $\cdot \beta_1$ is the slope of the line which is the change in the mean of the conditional probability distribution of *Y* per unit increase in *X*

· ϵ_i are uncorrelated random errors ($\sigma^2(\epsilon_i) = \sigma^2$ and $\sigma(\epsilon_i, \epsilon_j) = 0$)

 \cdot Why we need the distribution assumption of ϵ ?

 \rightarrow under the normality assumption of ϵ_i (i.e., $\epsilon_i \sim N(0, \sigma^2)$), ϵ_i are independent, and $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$ and Y_i are independent

Topics

- \cdot confidence interval and tests about β_0 and β_1
- \cdot confidence interval about E(Y) for given X
- \cdot prediction interval for a new observation Y
- \cdot ANOVA approach to test about β_1
- · descriptive measures of linear association between variables

2.1 Inferences concerning β_1

- Our interests are
 - \cdot point estimator for β_1 and its sampling distribution
 - · 100(1 α)% confidence interval for β_1
 - \cdot H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$

- $\beta_1 = 0$: there is no linear association between *Y* and *X*

• Sampling distribution of b_1 and $\frac{b_1 - \beta_1}{s(b_1)}$ (under repeated sampling)

 \cdot different values of b_1 that would be obtained from repeated sampling where the levels of X are the same as in the data set

$$\cdot b_1 \sim N\left(eta_1, rac{\sigma^2}{\sum (X_i - \bar{X})^2}
ight)$$

· unbiased estimator of $\sigma^2(b_1)$: $s^2(b_1) = \frac{MSE}{\sum (X_i - \bar{X})^2}$

$$rac{b_1-eta_1}{s(b_1)}\sim t_{(n-2)}$$
 where $s(b_1)=\sqrt{s^2(b_1)}.$

• $100(1 - \alpha)\%$ confidence interval for β_1

$$\cdot b_1 \pm t_{1-\alpha/2;n-2}s(b_1)$$

where
$$1 - \alpha = P\left(t_{\alpha/2;n-2} \le \frac{b_1 - \beta_1}{s(b_1)} \le t_{1-\alpha/2;n-2}\right).$$

• Two -sided test concerning β_1

$$\cdot$$
 H_0 : $\beta_1 = \beta_{10}$ (e.g., $\beta_{10} = 0$) vs H_1 : $\beta_1 \neq \beta_{10}$

- · test statistic : $t^{\star} = \frac{b_1 \beta_{10}}{s(b_1)} \sim t_{n-2}$ under H_0
- · decision rule for given α and observed t^* , t^*_{obs} i) do not reject H_0 if $|t^*_{obs}| \le t_{1-\alpha/2;n-2}$ or associated p-value $> \alpha$ ii) reject H_0 if $|t^*_{obs}| \ge t_{1-\alpha/2;n-2}$ or or associated p-value $< \alpha$

• One -sided test concerning β_1

$$\cdot$$
 H_0 : $\beta_1 \leq \beta_{10}$ vs H_1 : $\beta_1 > \beta_{10}$

· test statistic :
$$t^{\star} = rac{b_1 - eta_{10}}{s(b_1)} \sim t_{n-2}$$
 under H_0

· decision rule for given α and observed t^* , t^*_{obs} i) do not reject H_0 if $t^*_{obs} \leq t_{1-\alpha;n-2}$ or associated p-value $> \alpha$ ii) reject H_0 if $t^*_{obs} \geq t_{1-\alpha;n-2}$ or associated p-value $< \alpha$

2.2 Inferences concerning β_0

- Our interests are
 - \cdot point estimator for β_0 and its sampling distribution
 - \cdot 100(1 α)% confidence interval for β_0
 - · H_0 : $\beta_0 = 0$ vs. H_1 : $\beta_0 \neq 0$

[note] they are valid only if the range of X includes 0

• Sampling distribution of b_0 and $\frac{b_0 - \beta_0}{s(b_0)}$ (under repeated sampling)

 \cdot different values of b_0 that would be obtained with repeated sampling when the levels of the *X* are held constant from sample to sample.

$$\cdot b_0 \sim N\left(\beta_0, \sigma^2\left[\frac{1}{n} + rac{ar{X}^2}{\sum(X_i - ar{X})^2}
ight]
ight)$$

$$\cdot$$
 estimator of $\sigma^2(b_0)$: $s^2(b_0) = MSE\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum(X_i - \bar{X})^2}\right]$

$$\cdot rac{b_0-eta_0}{s(b_0)}\sim t_{n-2}$$
 where $s(b_0)=\sqrt{s^2(b_0)}.$

- $100(1 \alpha)\%$ confidence interval for β_0
 - $\cdot b_0 \pm t_{1-lpha/2;n-2}s(b_0)$

where $1 - \alpha = P\left(t_{\alpha/2;n-2} \leq \frac{b_0 - \beta_0}{s(b_0)} \leq t_{1-\alpha/2;n-2}\right)$.

Two-sided test concerning β₀

$$\cdot$$
 H_0 : $\beta_0 = \beta_{00}$ vs H_1 : $\beta_0 \neq \beta_{00}$

- · test statistic : $t^{\star} = \frac{b_0 \beta_{00}}{s(b_0)} \sim t(n-2)$ under H_0
- · decision rule for given α and observed t^* , t^*_{obs} i) do not reject H_0 if $|t^*_{obs}| \le t(1 - \alpha/2; n - 2)$ or associated p-value $> \alpha$ ii) reject H_0 if $|t^*_{obs}| \ge t(1 - \alpha/2; n - 2)$ or associated p-value $< \alpha$

Summary of the regression model in R - Copier example

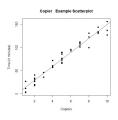
• Let X be the number of copiers serviced and Y be the time spent (in minutes) by the technician

```
#to upload a data set with "csv" extension in R
>copier=read.csv("C:/Users/stefa/Desktop/STAT 525- Fall 2019/data set/copier.csv",header=TRUE)
                                    #to show the data set in R
>copier
      Time Copiers
    20 2
 60 4
2
3 46 3
45 77 5
>reg=lm(Time~Copiers,data=copier)
                                   #to define a linear regression model, where Y is "Time"
                                     and X is number of copiers.
> summary(reg)
                                     #to call the results of the regression in a table
Call·
lm(formula = Time ~ Copiers, data = copier)
Residuals.
Min 10 Median 30
                              Max
-22.7723 -3.7371 0.3334 6.3334 15.4039
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5802 2.8039 -0.207 0.837
                   0.4831 31.123 <2e-16 ***
Copiers 15.0352
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 8.914 on 43 degrees of freedom
Multiple R-squared: 0.9575, Adjusted R-squared: 0.9565
F-statistic: 968.7 on 1 and 43 DF, p-value: < 2.2e-16
                                                         イロト 不得 トイヨト イヨト ニヨー
```

8

Plot the relationship in R - Copier example

- The estimated equation is $\hat{y} = -0.5802 + 15.0352x$
- We note that the slope b1 = 15.0352 implies that for each unit increase in copier quantity, the service time increases by 15.0352 minutes (for quantity values between 1 and 10). If we wish to estimate the time needed for a service call for 5 copiers that would be
- -0.5802 + 15.0352(5) = 74.5958*minutes*



Confidence intervals for beta in R - Copier example

```
95% CI for β<sub>1</sub> is
```

- $15.0352 + t_{1-.025.43}(0.4831) = 16.009486.$
- $15.0352 t_{1-.025,43}(0.4831) = 14.061010$

```
#to show the confidence intervals in R
>confint(reg,level=0.95)  #to calculate the 95% CI
2.5 % 97.5 %
(Intercept) -6.234843 5.074529
Copiers 14.061010 16.009486
> confint(reg,level=0.90)  #to calculate the 90% CI
5 % 95 %
(Intercept) -5.29378 4.133467
Copiers 14.22314 15.847352
```

2.3 Considerations on making Inferences concerning β_1 and β_0

• Validity of fitted regression model and, meaning of *b*₁ and *b*₀

 \cdot only valid over the span of range of value in our observed data (not outside of those values)

Effects of departure from normality

· inferences concerning β_1 and β_0 might hold as long as the probability distribution of *Y* are not far from normality for finite sample size

• Interpretation of confidence coefficient, $100(1 - \alpha)\%$

· Suppose one take repeated samples where the *X* observations are kept at the same levels as in the observed sample and a $100(1 - \alpha)\%$ confidence interval is obtained for each sample. Then $100(1 - \alpha)\%$ of the intervals will enclose the true value of β_1 .

2.4 Estimation of $E(Y_h)$ for a given X_h

Our interests are

- · point estimator for $E(Y_h) = \beta_0 + \beta_1 X_h$ and its sampling distribution
- \cdot 100(1 α)% confidence interval for $E(Y_h)$

[note] X_h is a value occurring in the sample or other value of the X within the scope of the model

- Point estimator for $E(Y_h)$: $\hat{Y}_h = b_0 + b_1 X_h$
- Sampling distribution of \hat{Y}_h and $\frac{\hat{Y}_h E(Y_h)}{s(\hat{Y}_h)}$ (under repeated sampling)

$$\cdot \ \hat{Y}_h \sim N\left(\beta_0 + X_h\beta_1, \sigma^2\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right]\right)$$

· estimator for $\sigma^2(\hat{Y}_h)$ is $s^2(\hat{Y}_h) = MSE\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right]$

$$\cdot rac{\hat{Y}_h - E(Y_h)}{s(\hat{Y}_h)} \sim t_{n-2}$$

• $100(1 - \alpha)$ % confidence interval for $E(Y_h)$ and its meaning

$$\cdot \hat{Y}_h \pm t_{1-\alpha/2;n-2} s(\hat{Y}_h)$$
where $1 - \alpha = P\left(t_{\alpha/2;n-2} \leq \frac{\hat{Y}_h - \mathcal{E}(Y_h)}{s(\hat{Y}_h)} \leq t_{1-\alpha/2;n-2}\right).$

· If one takes repeated sampling where the *X* observations are kept at the same levels as in the observed sample, and obtains a $100(1 - \alpha)\%$ confidence interval for each sample, then $100(1 - \alpha)\%$ of the intervals will enclose the true value of $E(Y_h) = \beta_0 + \beta_1 X_h$.

Confidence intervals for $E(Y_h)$ for a given X_h in R - Copier

#to show the 95% confidence intervals for E(Yh) for each value that belongs to the data set Xh in
>predict.lm(reg,se.fit=TRUE,copier,interval="confidence",level=0.95)
\$fit

```
fit
               lwr
                        upr
 29.49034 25.44468 33.53600
2 59.56084 56.67078 62.45089
3 44.52559 41.14760 47.90357
44 59.56084 56.67078 62.45089
45 74.59608 71.91422 77.27794
$se.fit
            3 4 5
2.006089 1.433068 1.675012 2.006089 2.389533 ....
$df
[1] 43
#to show the 95% confidence intervals for E(Yh) for a specific value Xh=3 in R:
>predict.lm(req,se.fit=TRUE,newdata=data.frame(Copiers=3),interval="confidence",level=0.95)
$fit
fit
       lwr
               upr
1 44.52559 41.1476 47.90357
$se.fit
[1] 1.675012
$df
[1] 43
```

- Assume we are interested in an upper 95% confidence limit for the mean time value when the quantity of copiers is 3.

2.5 Prediction of $Y_{h(new)}$ for a given X_h

Our interests are

· point prediction for $Y_{h(new)}$ when $X = X_h$ (random outcome from the distribution of Y at $X = X_h$: $Y_{h(new)} \sim N(\beta_0 + \beta_1 X_h, \sigma^2)$) and its probability distribution

 \cdot 100(1 – α)% prediction interval for $Y_{h(new)}$

[note] assume that

i) $Y_{h(new)}$ is independent of Y used in the regression analysis (so, $\sigma(Y_{h(new)}, \hat{Y}_h) = 0$) ii) X_h is a value of the X within the scope of the model

iii) the fitted model for our original data continues to be suitable for $Y_{h(new)}$

- Point prediction of $Y_{h(new)}$ for given X_h is $\hat{Y}_h = b_0 + b_1 X_h$
- Prediction error, $pred = Y_{h(new)} \hat{Y}_h$
 - · variance of prediction error, $\sigma^2(\text{pred}) = \sigma^2(Y_{h(\text{new})} \hat{Y}_h) = \sigma^2 + \sigma^2(\hat{Y}_h)$

•
$$\frac{Y_h(new) - \hat{Y}_h}{s(pred)} \sim t(n-2)$$
 where $s^2(pred) = s^2(Y_h(new) - \hat{Y}_h) = MSE + s^2(\hat{Y}_h)$

- 100(1 α)% prediction limit for $Y_{h(new)}$
 - $\cdot \hat{Y}_h \pm t_{1-\alpha/2;n-2}s(pred)$
- Prediction interval for Y_{h(new)} sensitive to departure from normality (Chapter 3)

・ロ・・日・・日・・日・ うへぐ

Prediction intervals for $Y_{h(new)}$ for a given X_h in R - Copier

#to show the 95% prediction intervals for Yh(new) for each value that belongs to the data set Xh:
> predict.lm(reg,se.fit=TRUE,copier,interval="prediction",level=0.95)
\$fit

```
fit
              lwr
                      upr
 29.49034 11.064899 47.91578
 59.56084 41.354191 77.76748
2
3 44.52559 26.235146 62.81603
44 59.56084 41.354191 77.76748
45 74.59608 56.421325 92.77084
Sse fit
           3 4 5 ....
1
       2
2.006089 1.433068 1.675012 2.006089 2.389533 ....
$df
[1] 43
#to show the 95% prediction intervals for Yh(new) for a specific value Xh=7:
>predict.lm(reg,se.fit=TRUE,newdata=data.frame(Copiers=7),interval="prediction",level=0.95)
Śfit
     fit
            lwr
                     upr
1 104 6666 86 39922 122 9339
$se.fit
[1] 1.6119
$df
[1] 43
```

- Let us estimate the future service time value when copier quantity is 7 and create a interval around it. The predicted value is:
- -0.5802 + 15.0352(7) = 104.6666 minutes
- a 95% upper prediction limit around the predicted value is:
- $104.6666 + t_{1-.025,43}(9.058051) = 122.9339$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

2.7 Analysis of Variance approach to regression analysis

- ANOVA (analysis of variance) table
 - · partitioning of the total amount of variance in Y
 - \cdot which portion of the variance can be accounted for by our model and what portion is just random error
 - · capture as much variance in Y by our model as possible
- Partitioning of variation in the observations Y_i

$$Y_i - \bar{Y} = (\hat{Y}_i - \bar{Y}) + (Y_i - \hat{Y}_i)$$

(total deviation = deviation of fitted regression value around mean + deviation around fitted regression line)

$$\sum_{i} (Y_i - \bar{Y})^2 = \sum_{i} (\hat{Y}_i - \bar{Y})^2 + \sum_{i} (Y_i - \hat{Y}_i)^2$$

SSTO = SSR + SSE

$$\sum (Y_i - \bar{Y})^2 = \sum Y_i^2 - n\bar{Y}^2 \text{ and } \sum (\hat{Y}_i - \bar{Y})^2 = b_1^2 \sum (X_i - \bar{X})^2$$

$$\sum \sum_{i=1}^n (\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i) = 2 \sum_{i=1}^n (\hat{Y}_i - \bar{Y}) e_i = 2 \sum_{i=1}^n \hat{Y}_i e_i - 2\bar{Y} \sum_{i=1}^n e_i = 0$$

· SSTO(total sum of squares) : variation(uncertainty) in Y_i , when no account of X is taken

 \cdot SSR (regression sum of squares) : variation in Y_i associated with the regression line, \hat{Y}_i

· SSE(error sum of squares) : variation in Y_i , when the regression model utilizing X, \hat{Y}_i , is employed

· The larger *SSR*/*SSTO*, the greater is the effect of the regression in accounting for the total variation in the observations Y_i

Partitioning of the *df*(degrees of freedom) associated with SS(Sum of Squares)

 \cdot df: the number of degrees of freedom is the number of independent observations in a sample of data that are available to estimate a parameter of the population from which that sample is drawn

 \cdot (n-1) in SSTO = 1 in SSR + (n-2) in SSE

• Mean Squares (MS=a sum of squares / corresponding df)

MSR(regression MS) = SSR/1 = SSR and MSE(error MS) = SSE/(n-2)

ANOVA(Analysis of Variance)

Source of Variation	55	df	MS
Regression	$SSR = \sum (\hat{Y}_i - \bar{Y})^2$	1	$MSR = \frac{SSR}{1}$
Error	$SSE = \sum (Y_i - \hat{Y}_i)^2$	n – 2	$MSE = \frac{SSE}{n-2}$
Total	$SSTO = \sum (Y_i - \bar{Y})^2$	n — 1	

20

 $\cdot E(MSR) = \sigma^2 + \beta_1^2 \sum_i (X_i - \bar{X})^2$ and $E(MSE) = \sigma^2$. So $E(MSR)/E(MSE) \ge 1$ and E(MSR) = E(MSE) if $\beta_1 = 0$.

- F test of H_0 : $\beta_1 = 0$ vs H_a : $\beta_1 \neq 0$ using ANOVA Table
 - · test statistic and its sampling distribution : $F^{\star} = \frac{MSR}{MSE} \sim F_{1,n-2}$ under H_0
 - \cdot decision rule for given α

i) do not reject H_0 if $F_{obs}^* \leq F_{1-\alpha;1,n-2}$ or associated p-value $> \alpha$

ii) reject H_0 if $F_{obs}^{\star} > F_{1-\alpha;1,n-2}$ or associated p-value $< \alpha$

(hint : large values of F_{obs}^{\star} (>>1) supports H_a and values of F_{obs}^{\star} near 1 support H_0 . so this is an upper-tail test)

Equivalence of F test and t test in Chapter 2.1

· under
$$H_0$$
, $F^* = \frac{MSR}{MSE} = \frac{SSR}{MSE} = \frac{b_1^2 \sum (X_i - \bar{X})^2}{MSE} = \left(\frac{b_1}{s(b_1)}\right)^2 = (t^*)^2$ where $s(b_1) = \frac{MSE}{\sum (X_i - \bar{X})^2}$

$$[t_{1-\alpha/2;n-2}]^2 = F_{1-\alpha;1,n-2}$$

· Under the simple linear regression model, F-test for H_0 : $\beta_1 = 0$ is equivalent to t-test for H_0 : $\beta_1 = 0$

<ロト < 部 > < 言 > < 言 > こ の < で 22

ANOVA table in R - Copier

#to create the ANOVA table
> anova(reg)
Analysis of Variance Table
Response: Time
Df Sum Sq Mean Sq F value Pr(>F)
Copiers 1 76960 76960 968.66 < 2.2e-16 ***
Residuals 43 3416 79
--Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1</pre>

2.9 Descriptive Measures of Linear Association between X and Y

Coefficient of Determination, R²

 $\cdot R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$ = proportion of variance accounted for by our model

 \cdot The closer R^2 is to 1, the greater is the degree of linear association

Misunderstandings of R²

- · high R² indicates useful predictions? Not necessarily
- \cdot high R^2 indicates a good fit of the estimated regression line? Not necessarily
- $\cdot R^2$ near zero indicates X and Y are unrelated? Not necessarily

• Use both R^2 and a scatter plot of (X, Y)

• Coefficient of Correlation *r* (when *X* and *Y* are both random)

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} \text{ as an estimator of } \rho = \frac{\sigma(X, Y)}{\sqrt{\sigma^2(X)\sigma^2(Y)}}$$

$$r - 1 \le r \le 1$$

· The closer *r* is to +1(-1), the greater is the degree of positive(negative) linear association · $r = \pm \sqrt{R^2}$ under simple linear regression model (why?)

▲□ → ▲□ → ▲目 → ▲目 → ● ● ● ● ● ●

25

· use both r and a scatter plot of (X, Y)

[Remarks]

When one uses regression analysis for prediction,

 \cdot basic causal conditions in the period ahead should be similar to those in existence during the period on which the regression analysis is based.

 \cdot the prediction in the regression analysis is conditional on *X*. In practice, however, *X* often needs to be predicted.

 \cdot the prediction in the regression analysis may be reasonable if X does not fall far beyond the range of the data on which the regression analysis is based.

- When data are obtained from nonexperimental design,
 - $\cdot \beta_1 \neq 0 \Rightarrow$? a cause-and-effect relation between *X* and *Y*?