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Outline
Simple Linear Regression Model, Yi = β0 + β1Xi + εi

· β0 is the intercept of the line which is the mean of the conditional probability
distribution of Y at X = 0

· β1 is the slope of the line which is the change in the mean of the conditional
probability distribution of Y per unit increase in X

· εi are uncorrelated random errors (σ2(εi ) = σ2 and σ(εi , εj ) = 0)

·Why we need the distribution assumption of ε?

→ under the normality assumption of εi (i.e., εi ∼ N(0, σ2)), εi are
independent, and Yi ∼ N(β0 + β1Xi , σ

2) and Yi are independent

Topics

· confidence interval and tests about β0 and β1

· confidence interval about E(Y ) for given X

· prediction interval for a new observation Y

· ANOVA approach to test about β1

· descriptive measures of linear association between variables
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2.1 Inferences concerning β1

Our interests are

· point estimator for β1 and its sampling distribution

· 100(1− α)% confidence interval for β1

· H0 : β1 = 0 vs. H1 : β1 6= 0

- β1 = 0 : there is no linear association between Y and X

Sampling distribution of b1 and b1−β1
s(b1) (under repeated sampling)

· different values of b1 that would be obtained from repeated sampling
where the levels of X are the same as in the data set

· b1 ∼ N
(
β1,

σ2∑
(Xi−X̄)2

)
· unbiased estimator of σ2(b1) : s2(b1) = MSE∑

(Xi−X̄)2

· b1−β1
s(b1) ∼ t(n−2) where s(b1) =

√
s2(b1).
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100(1− α)% confidence interval for β1

· b1 ± t1−α/2;n−2s(b1)

where 1− α = P
(

tα/2;n−2 ≤ b1−β1
s(b1) ≤ t1−α/2;n−2

)
.

Two -sided test concerning β1

· H0 : β1 = β10 (e.g., β10 = 0) vs H1 : β1 6= β10

· test statistic : t? = b1−β10
s(b1) ∼ tn−2 under H0

· decision rule for given α and observed t?, t?obs

i) do not reject H0 if | t?obs |≤ t1−α/2;n−2 or associated p-value > α

ii) reject H0 if | t?obs |≥ t1−α/2;n−2 or or associated p-value < α
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One -sided test concerning β1

· H0 : β1 ≤ β10 vs H1 : β1 > β10

· test statistic : t? = b1−β10
s(b1) ∼ tn−2 under H0

· decision rule for given α and observed t?, t?obs

i) do not reject H0 if t?obs ≤ t1−α;n−2 or associated p-value > α

ii) reject H0 if t?obs ≥ t1−α;n−2 or associated p-value < α
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2.2 Inferences concerning β0

Our interests are

· point estimator for β0 and its sampling distribution

· 100(1− α)% confidence interval for β0

· H0 : β0 = 0 vs. H1 : β0 6= 0

[note] they are valid only if the range of X includes 0

Sampling distribution of b0 and b0−β0
s(b0) (under repeated sampling)

· different values of b0 that would be obtained with repeated sampling
when the levels of the X are held constant from sample to sample.

· b0 ∼ N
(
β0, σ

2
[

1
n + X̄ 2∑

(Xi−X̄)2

])
· estimator of σ2(b0) : s2(b0) = MSE

[
1
n + X̄ 2∑

(Xi−X̄)2

]
· b0−β0

s(b0) ∼ tn−2 where s(b0) =
√

s2(b0).

6



100(1− α)% confidence interval for β0

· b0 ± t1−α/2;n−2s(b0)

where 1− α = P
(

tα/2;n−2 ≤ b0−β0
s(b0) ≤ t1−α/2;n−2

)
.

Two-sided test concerning β0

· H0 : β0 = β00 vs H1 : β0 6= β00

· test statistic : t? = b0−β00
s(b0) ∼ t(n − 2) under H0

· decision rule for given α and observed t?, t?obs

i) do not reject H0 if | t?obs |≤ t(1− α/2; n− 2) or associated p-value > α

ii) reject H0 if | t?obs |≥ t(1− α/2; n − 2) or associated p-value < α
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Summary of the regression model in R - Copier example
Let X be the number of copiers serviced and Y be the time spent
(in minutes) by the technician

#to upload a data set with "csv" extension in R
>copier=read.csv("C:/Users/stefa/Desktop/STAT 525- Fall 2019/data set/copier.csv",header=TRUE)
>copier #to show the data set in R

Time Copiers
1 20 2
2 60 4
3 46 3
................
45 77 5

>reg=lm(Time~Copiers,data=copier) #to define a linear regression model, where Y is "Time"
and X is number of copiers.

> summary(reg) #to call the results of the regression in a table
Call:
lm(formula = Time ~ Copiers, data = copier)

Residuals:
Min 1Q Median 3Q Max
-22.7723 -3.7371 0.3334 6.3334 15.4039

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5802 2.8039 -0.207 0.837
Copiers 15.0352 0.4831 31.123 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.914 on 43 degrees of freedom
Multiple R-squared: 0.9575, Adjusted R-squared: 0.9565
F-statistic: 968.7 on 1 and 43 DF, p-value: < 2.2e-16
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Plot the relationship in R - Copier example
The estimated equation is ŷ = −0.5802 + 15.0352x

We note that the slope b1 = 15.0352 implies that for each unit increase
in copier quantity, the service time increases by 15.0352 minutes (for
quantity values between 1 and 10). If we wish to estimate the time
needed for a service call for 5 copiers that would be

−0.5802 + 15.0352(5) = 74.5958minutes

#to plot the relationship between X and Y in R
>plot(copier$Copier,copier$Time,pch=16,xlab="Copiers",ylab="Time (in minutes)",main="Copiers Example Scatterplot")
>abline(reg) #to add a regression line on the plot
>copier$Copiers #the variable "Copiers" as a vector from the data set "copier"
>copier$Time #the variable "Time" as a vector from the data set "copier"
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Confidence intervals for beta in R - Copier example

95% CI for β1 is

15.0352 + t1−.025,43(0.4831) = 16.009486.

15.0352 − t1−.025,43(0.4831) = 14.061010

#to show the confidence intervals in R
>confint(reg,level=0.95) #to calculate the 95% CI
2.5 % 97.5 %

(Intercept) -6.234843 5.074529
Copiers 14.061010 16.009486

> confint(reg,level=0.90) #to calculate the 90% CI
5 % 95 %
(Intercept) -5.29378 4.133467
Copiers 14.22314 15.847352
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2.3 Considerations on making Inferences concerning β1 and β0

Validity of fitted regression model and, meaning of b1 and b0

· only valid over the span of range of value in our observed data (not
outside of those values)

Effects of departure from normality

· inferences concerning β1 and β0 might hold as long as the probability
distribution of Y are not far from normality for finite sample size

Interpretation of confidence coefficient, 100(1− α)%

· Suppose one take repeated samples where the X observations are
kept at the same levels as in the observed sample and a 100(1− α)%
confidence interval is obtained for each sample. Then 100(1− α)% of
the intervals will enclose the true value of β1.
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2.4 Estimation of E(Yh) for a given Xh

Our interests are

· point estimator for E(Yh) = β0 + β1Xh and its sampling distribution

· 100(1− α)% confidence interval for E(Yh)

[note] Xh is a value occurring in the sample or other value of the X within
the scope of the model

Point estimator for E(Yh) : Ŷh = b0 + b1Xh

Sampling distribution of Ŷh and Ŷh−E(Yh)

s(Ŷh)
(under repeated sampling)

· Ŷh ∼ N
(
β0 + Xhβ1, σ

2
[

1
n + (Xh−X̄)2∑

(Xi−X̄)2

])
· estimator for σ2(Ŷh) is s2(Ŷh) = MSE

[
1
n + (Xh−X̄)2∑

(Xi−X̄)2

]
· Ŷh−E(Yh)

s(Ŷh)
∼ tn−2
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100(1− α)% confidence interval for E(Yh) and its meaning

· Ŷh ± t1−α/2;n−2s(Ŷh)

where 1− α = P
(

tα/2;n−2 ≤ Ŷh−E(Yh)

s(Ŷh)
≤ t1−α/2;n−2

)
.

· If one takes repeated sampling where the X observations are kept at
the same levels as in the observed sample, and obtains a 100(1− α)%
confidence interval for each sample, then 100(1− α)% of the intervals
will enclose the true value of E(Yh) = β0 + β1Xh.
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Confidence intervals for E(Yh) for a given Xh in R - Copier
#to show the 95% confidence intervals for E(Yh) for each value that belongs to the data set Xh in R:
>predict.lm(reg,se.fit=TRUE,copier,interval="confidence",level=0.95)
$fit

fit lwr upr
1 29.49034 25.44468 33.53600
2 59.56084 56.67078 62.45089
3 44.52559 41.14760 47.90357
................................
44 59.56084 56.67078 62.45089
45 74.59608 71.91422 77.27794

$se.fit
1 2 3 4 5 ....
2.006089 1.433068 1.675012 2.006089 2.389533 ....
$df
[1] 43

#to show the 95% confidence intervals for E(Yh) for a specific value Xh=3 in R:
>predict.lm(reg,se.fit=TRUE,newdata=data.frame(Copiers=3),interval="confidence",level=0.95)
$fit
fit lwr upr
1 44.52559 41.1476 47.90357

$se.fit
[1] 1.675012
$df
[1] 43

Assume we are interested in an upper 95% confidence limit for the mean
time value when the quantity of copiers is 3.

44.52559 + t1−.025,43(1.675012) = 47.90375
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2.5 Prediction of Yh(new) for a given Xh

Our interests are

· point prediction for Yh(new) when X = Xh (random outcome from the
distribution of Y at X = Xh : Yh(new) ∼ N(β0 + β1Xh, σ

2) ) and its
probability distribution

· 100(1− α)% prediction interval for Yh(new)

[note] assume that

i) Yh(new) is independent of Y used in the regression analysis (so, σ(Yh(new), Ŷh) = 0)
ii) Xh is a value of the X within the scope of the model

iii) the fitted model for our original data continues to be suitable for Yh(new)

Point prediction of Yh(new) for given Xh is Ŷh = b0 + b1Xh

Prediction error, pred = Yh(new) − Ŷh

· variance of prediction error, σ2(pred) = σ2(Yh(new) − Ŷh) = σ2 + σ2(Ŷh)

Yh(new)−Ŷh
s(pred) ∼ t(n − 2) where s2(pred) = s2(Yh(new)− Ŷh) = MSE + s2(Ŷh)
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100(1− α)% prediction limit for Yh(new)

· Ŷh ± t1−α/2;n−2s(pred)

Prediction interval for Yh(new) sensitive to departure from normality
(Chapter 3)
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Prediction intervals for Yh(new) for a given Xh in R - Copier
#to show the 95% prediction intervals for Yh(new) for each value that belongs to the data set Xh:
> predict.lm(reg,se.fit=TRUE,copier,interval="prediction",level=0.95)
$fit

fit lwr upr
1 29.49034 11.064899 47.91578
2 59.56084 41.354191 77.76748
3 44.52559 26.235146 62.81603

................................
44 59.56084 41.354191 77.76748
45 74.59608 56.421325 92.77084
$se.fit
1 2 3 4 5 ....
2.006089 1.433068 1.675012 2.006089 2.389533 ....
$df
[1] 43

#to show the 95% prediction intervals for Yh(new) for a specific value Xh=7:
>predict.lm(reg,se.fit=TRUE,newdata=data.frame(Copiers=7),interval="prediction",level=0.95)
$fit

fit lwr upr
1 104.6666 86.39922 122.9339
$se.fit
[1] 1.6119
$df
[1] 43

Let us estimate the future service time value when copier quantity is 7 and create a interval around it. The predicted
value is:

−0.5802 + 15.0352(7) = 104.6666minutes

a 95% upper prediction limit around the predicted value is:

104.6666 + t1−.025,43(9.058051) = 122.9339
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2.7 Analysis of Variance approach to regression analysis

ANOVA (analysis of variance) table

· partitioning of the total amount of variance in Y

· which portion of the variance can be accounted for by our model and
what portion is just random error

· capture as much variance in Y by our model as possible

Partitioning of variation in the observations Yi

Yi − Ȳ = (Ŷi − Ȳ ) + (Yi − Ŷi )

(total deviation = deviation of fitted regression value around mean + deviation around fitted
regression line)
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∑
i

(Yi − Ȳ )2 =
∑

i

(Ŷi − Ȳ )2 +
∑

i

(Yi − Ŷi )
2

SSTO = SSR + SSE

·
∑

(Yi − Ȳ )2 =
∑

Y 2
i − nȲ 2 and

∑
(Ŷi − Ȳ )2 = b2

1
∑

(Xi − X̄ )2

· 2
∑n

i=1(Ŷi − Ȳ )(Yi − Ŷi ) = 2
∑n

i=1(Ŷi − Ȳ )ei = 2
∑n

i=1 Ŷiei − 2Ȳ
∑n

i=1 ei = 0

· SSTO(total sum of squares) : variation(uncertainty) in Yi , when no account of
X is taken

· SSR (regression sum of squares) : variation in Yi associated with the
regression line, Ŷi

· SSE(error sum of squares) : variation in Yi , when the regression model utilizing
X , Ŷi , is employed

· The larger SSR/SSTO, the greater is the effect of the regression in accounting
for the total variation in the observations Yi
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Partitioning of the df(degrees of freedom) associated with SS(Sum of
Squares)

· df : the number of degrees of freedom is the number of independent
observations in a sample of data that are available to estimate a
parameter of the population from which that sample is drawn

· (n-1) in SSTO = 1 in SSR + (n-2) in SSE

Mean Squares (MS=a sum of squares / corresponding df)

· MSR(regression MS) = SSR/1 = SSR and MSE(error MS) = SSE/(n-2)

ANOVA(Analysis of Variance)
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· E(MSR) = σ2 + β2
1
∑

i (Xi − X̄ )2 and E(MSE) = σ2. So
E(MSR)/E(MSE) ≥ 1 and E(MSR) = E(MSE) if β1 = 0.

F test of H0 : β1 = 0 vs Ha : β1 6= 0 using ANOVA Table

· test statistic and its sampling distribution : F ? = MSR
MSE ∼ F1,n−2 under H0

· decision rule for given α

i) do not reject H0 if F?obs ≤ F1−α;1,n−2 or associated p-value > α

ii) reject H0 if F?obs > F1−α;1,n−2 or associated p-value < α

(hint : large values of F?obs (>>1) supports Ha and values of F?obs near 1 support
H0. so this is an upper-tail test)
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Equivalence of F test and t test in Chapter 2.1

· under H0, F ? = MSR
MSE = SSR

MSE =
b2

1
∑

(Xi−X̄)2

MSE =
(

b1
s(b1)

)2
= (t?)2 where

s(b1) = MSE∑
(Xi−X̄)2

· [t1−α/2;n−2]2 = F1−α;1,n−2

· Under the simple linear regression model, F-test for H0 : β1 = 0 is
equivalent to t-test for H0 : β1 = 0
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ANOVA table in R - Copier

#to create the ANOVA table
> anova(reg)
Analysis of Variance Table

Response: Time
Df Sum Sq Mean Sq F value Pr(>F)
Copiers 1 76960 76960 968.66 < 2.2e-16 ***
Residuals 43 3416 79
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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2.9 Descriptive Measures of Linear Association between X and Y

Coefficient of Determination, R2

· R2 = SSR
SSTO = 1− SSE

SSTO = proportion of variance accounted for by our model

· The closer R2 is to 1, the greater is the degree of linear association

Misunderstandings of R2

· high R2 indicates useful predictions? Not necessarily

· high R2 indicates a good fit of the estimated regression line? Not necessarily

· R2 near zero indicates X and Y are unrelated? Not necessarily

Use both R2 and a scatter plot of (X ,Y )
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Coefficient of Correlation r (when X and Y are both random)

· r =
∑n

i=1(Xi−X̄)(Yi−Ȳ )√∑n
i=1(Xi−X̄)2 ∑n

i=1(Yi−Ȳ )2
as an estimator of ρ = σ(X ,Y )√

σ2(X)σ2(Y )

· −1 ≤ r ≤ 1

· The closer r is to +1(-1), the greater is the degree of positive(negative) linear association

· r = ±
√

R2 under simple linear regression model (why? )

· use both r and a scatter plot of (X ,Y )
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[Remarks]

When one uses regression analysis for prediction,

· basic causal conditions in the period ahead should be similar to those
in existence during the period on which the regression analysis is based.

· the prediction in the regression analysis is conditional on X . In practice,
however, X often needs to be predicted.

· the prediction in the regression analysis may be reasonable if X does
not fall far beyond the range of the data on which the regression analysis
is based.

When data are obtained from nonexperimental design,

· β1 6= 0⇒? a cause-and-effect relation between X and Y ?
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