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1.1 Variable Types and Relations between Two Variables
Dependent vs. Independent

Independent variable(X ) : predictor, explanatory variable

· manipulated or changed by the experimenter

· influences the dependent variable

Dependent variable(Y ) : response variable, outcome variable

· observed result of the independent variable being manipulated

· we want to predict

(e.g.) A call center where the number of customers serviced per hour, depends
on the number of agents, and average service time per customer.

Quantitative vs. Qualitative
Quantitative variable

· naturally measured as a number for which meaningful arithmetic operations
make sense.

· discrete variable and continuous variable

Qualitative variable : categorical Variable

· have no numerical meaning and take a value that is one of several possible
categories
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If X is an independent and quantitative variable and Y is a dependent and quantitative
variable,

Functional Relation : Y = f (X )

Statistical Relation : Y = f (X ) + ε where ε is an (random) error term

· variation in Y that is not associated with X and that is considered to be of a
random nature

· all data points do not fall directly on the line of relationship

   Figure 1.1(KNN)

Y(dollar sales of a product)

X(# of units sold)

Scatter plots

   Figure 1.2(KNN)

Y(Year-end evaluation)

X(midyear evaluation)

        Figure 1.3(KNN)

Y(level of a steroid in plasma)

X(age)
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1.2 Regression Models and Their Uses
1) Purpose of regression models

determine the magnitude of the (typically imperfect) relationship between Y and
a set of Xs
predict Y from a set of Xs

2) Basic concepts
A tendency of Y to vary with X in a systematic fashion
A scattering of points around the curve of statistical relationship
· Probability distribution of Y for each level of X : f (Y | X = x)

· Regression function of Y on X, E(Y | X ) ≡
∫

y f (Y | X )dy : the means of
these probability distributions of Y vary in some systematic fashion with X and it
is a function of X
· Y = f (X ) + ε = E(Y | X ) + ε

Figure 1.4(KNN) 5



3) Construction of Regression Models

Selection of a set of “good” Xs

Functional form of regression relation

Scope of regression model

Regression and Causality

4) Data for regression analysis

Observational data from nonexperimental studies that do not control Xs of
interest

· no adequate information about cause-and-effect relationships

Experimental data from experimental studies that control Xs of interest through
randomization

· stronger information about cause-and-effect relationships

· randomization balancing out the effects of other predictors that might affect Y
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1.3 Simple Linear Regression Model with Distribution of Error
Terms Unspecified

Yi = E(Yi | Xi) + εi = β0 + β1Xi + εi i = 1, . . . ,n (1)

Assumptions

· Yi is the i-th value of the response variable

· Xi is the i-th known value of the predictor variable (constant)

· β0 and β1 are parameters (unknown constant) (regression coefficients)

· εi is an uncorrelated random error term with E(εi ) = 0, σ2(εi ) = σ2 and
σ(εi , εj ) = 0

So, E(Yi ) = , σ2(Yi ) = , σ(Yi ,Yj ) =

· simple : there is only one X (multiple : # of X in the model >1)

· linear in the parameters

· β0, β1 and σ2 are the unknown parameters.
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Meaning of regression coefficients, β0 and β1

· β1 = the slope (the change in the mean of the probability distribution of Y per
unit increase in X )

· β0 = the intercept (the mean of the probability distribution of Y at X = 0)
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Features

· Yi is a random variable (why?)

· mean response (regression function), E(Yi ) = β0 + β1Xi

· σ2(Yi ) = σ2 : each probability distribution of Y has the same variance σ2

· σ(Yi ,Yj ) : Yi and Yj are uncorrelated

→ Yi comes from probability distributions whose means are β0 + β1Xi and
whose variances are σ2, the same for all levels of X . In addition, Yi and Yj are
uncorrelated.

Alternative versions of Yi = β0 + β1Xi + εi

· Yi = β0X0 + β1Xi where β0 ≡ 1

· Yi = β?0 + β1(Xi − X̄ ) where β?0 = β0 + β1X̄
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1.5 Overview of Steps in Regression Analysis

(e.g.) Plot of Y vs X

Point estimation for the model (Chapter 1)

Check the assumptions of the regression

model (Chapter 3)

Confidence interval, Testing and

Prediction (Chapter 2 and 4)

Simple linear regression Model
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1.6 Estimation of β0, β1 and σ2

For the observations (X1,Y1), . . . , (Xi ,Yi ), . . . , (Xn,Yn),
Use the method of least squares to obtain estimators of β0 and β1

[Idea] the estimators of β0 and β1 are those values b0 and b1, respectively,
minimizing Q

Q =
n∑

i=1

ε2
i =

n∑
i=1

(Yi − E(Yi ))2 =
n∑

i=1

(Yi − β0 − β1Xi )
2

where Yi − β0 − β1Xi is the deviation of Yi from its expected value
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Least Squares estimators for β0 and β1 are

b1 =

∑
i (Xi − X̄ )(Yi − Ȳ )∑

i (Xi − X̄ )2
=

∑
i (Xi − X̄ )Yi∑
i (Xi − X̄ )2

, b0 = Ȳ − b1X̄

· How? solve ∂Q
∂β0

= 0 and ∂Q
∂β1

= 0 simultaneously

Meaning of b1 and b0

(Study example) Suppose one is interested in the relationship between the
number of hours (X ) given for study and score on a test (Y ). Given 20
observations (Xi ,Yi ), a simple linear regression was applied, and β1 and β0

using the method of least squares were calculated : b1 = 3.5 and b0 = 15.05

· students score on average when they did not study

· adding an additional hour to your study time will result in an average score of
point higher
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Properties of b0 and b1

· b0 and b1 are BLUE(Best Linear Unbiased Estimator)

Point estimation of E(Y ) = β0 + β1X

· Given b0 and b1, the estimated regression function at X is

Ŷ = b0 + b1X (2)

so, Ŷi = b0 + b1Xi where i = 1, . . . , n (called as the i-th fitted value)

(e.g.) In our (Study example), Ŷ = 15.05 + 3.5X . For a student studying 4
hours, the expected score on the exam is .

Residuals, ei = Yi − Ŷi = Yi − b0 − b1Xi

· vertical deviation of Yi from the corresponding fitted value Ŷi

· difference between εi = Yi − E(Yi ) and ei = Yi − Ŷi

· very very useful for studying an estimated regression model is suitable for the n
observations (Xi ,Yi ) (Chapter 3)
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Properties of ei and Ŷi

·
∑

i ei = 0 and
∑

i e2
i is a minimum

· mean of Ŷi = Ȳ , i.e., 1
n

∑
i Ŷi = 1

n

∑
i Yi

·
∑

i Xiei = 0 and
∑

i Ŷiei = 0

· the regression line goes through the point (X̄ , Ȳ )

Point Estimation of σ2(Y ) = σ2(ε) = σ2

· Yi from different probability distributions with different means depending on Xi

· deviation of Yi from Ŷi : ei = Yi − Ŷi

· s2 = MSE = SSE
n−2 =

∑n
i=1 e2

i
n−2 =

∑n
i=1(Yi−Ŷi )

2

n−2 where MSE is residual mean square
and SSE is residual sum of squares : an estimator for σ2

· E(s2) = σ2

· s =
√

s2 for the standard deviation σ =
√
σ2

14



1.8 Simple Linear Regression Model with Normal Distribution
Error Terms

Method of least squares

· only know E(εi ) = 0 and σ2(εi ) = σ2 (the distribution of the εi is unspecified)

· b1 and b0 are BLUE for β0 and β1 in Eq. (1), and s2 = MSE = SSE
n−2 =

∑n
i=1 e2

i
n−2 is

an unbiased estimator for σ2

One more assumption about the distribution of the εi in Yi = β0 + β1Xi + εi

· need for interval estimators and hypothesis testing

· εi ∼ N(0, σ2) and σ(εi , εj ) = 0 (uncorrelatedness implies independence
between εi and εj .

Then, Yi ∼ N(β0 + β1Xi , σ
2) ,

and σ(Yi ,Yj ) = 0

(so, Yi and Yj are independent).

Figure 1.6 (KNN)
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Estimation of β0, β1 and σ2 in Yi = β0 + β1Xi + εi when εi ∼ N(0, σ2) and
σ(εi , εj ) = 0

· use Method of Maximum Likelihood

[Idea] construct the likelihood function of β0, β1 and σ2, L(β0, β1, σ
2), and find

values of the parameters maximizing the log of L(β0, β1, σ
2), `(β0, β1, σ

2)

: Since Yi ∼ N(β0 + β1Xi , σ
2), f (Yi ;β0, β1, σ

2) = 1√
2πσ2 exp

[
− 1

2

(
Yi−β0−β1Xi

σ

)2
]
.

Then the (log) likelihood function is

L(β0, β1, σ
2) =

n∏
i=1

f (Yi ;β0, β1, σ
2) =

(
1√

2πσ2

)n

exp

[
− 1

2σ2

n∑
i=1

(Yi − β0 − β1Xi )
2

]

`(β0, β1, σ
2) = log L(β0, β1, σ

2) = −n
2

log(2πσ2)− 1
2σ2

n∑
i=1

(Yi − β0 − β1Xi )
2

Then solve ∂`(β0,β1,σ
2)

∂β0
= 0, ∂`(β0,β1,σ

2)
∂β1

= 0 and ∂`(β0,β1,σ
2)

∂σ2 = 0 simultaneously.
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Estimators for β0, β1 and σ2 and their properties

Parameter Method of Least Squares Method of Maximum Likelihood

β1 b1 =
∑

i (Xi−X̄)(Yi−Ȳ )∑
i (Xi−X̄)2 β̂1 =

∑
i (Xi−X̄)(Yi−Ȳ )∑

i (Xi−X̄)2

β0 b0 = Ȳ − b1X̄ β̂0 = Ȳ − b1X̄

σ2 s2 =
∑n

i=1(Yi−Ŷi )
2

n−2 σ̂2 =
∑n

i=1(Yi−Ŷi )
2

n

· β̂1 and β̂0 are unbiased, sufficient and consistent

· β̂1 and β̂0 have minimum variance among all unbiased (linear or otherwise)
estimators

· s2 is unbiased, but σ̂2 is biased for finite n.
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Calculate the regression coefficients and MSE with R

>x=c(-1,0,-2,-3) #to introduce a variable
>y=c(-5,-4,2,-7)
>b_1=cov(x,y)/var(x) #to calculatee b1
>b_1 #to call the value of b1
[1] 0.2
> b_0=mean(y)-b_1*mean(x) #to calculate b0
> b_0 #to call the value of b0
[1] -3.2
>yhat=b_0+b_1*x #to introduce the regression model
>yhat #to call the value of yhat
[1] -3.4 -3.2 -3.6 -3.8
> n=length(y) #to introduce the number of observations
> n #to call the value of n
[1] 4
> MSE=sum(y-yhat)^2/(n-2) #to introduce MSE=S^2 as a variable
> MSE #to call the value of MSE
[1] 9.860761e-32
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