## Stat 525 Regression Analysis

# Lecture 1: Linear Regression with One Predictor Variable 

Zheni Utic

Department of Mathematics and Statistics, University of Massachusetts Amherst

## Outline

- Relations between Two Variables
- Regression Models and Their Uses
- Simple Linear Regression Model with Distribution of Error Terms Unspecified
- Overview of Steps in Regression Analysis
- Point estimation of $E(Y)=\beta_{0}+\beta_{1} X$
- Point estimation of $\sigma^{2}(Y)=\sigma^{2}$
- Simple Linear Regression Model with Normal Distribution Error Terms


### 1.1 Variable Types and Relations between Two Variables

Dependent vs. Independent

- Independent variable $(X)$ : predictor, explanatory variable
- manipulated or changed by the experimenter
- influences the dependent variable
- Dependent variable $(Y)$ : response variable, outcome variable
- observed result of the independent variable being manipulated
- we want to predict
(e.g.) A call center where the number of customers serviced per hour, depends on the number of agents, and average service time per customer.

Quantitative vs. Qualitative

- Quantitative variable
- naturally measured as a number for which meaningful arithmetic operations make sense.
- discrete variable and continuous variable
- Qualitative variable : categorical Variable
- have no numerical meaning and take a value that is one of several possible categories

If $X$ is an independent and quantitative variable and $Y$ is a dependent and quantitative variable,

- Functional Relation : $Y=f(X)$
- Statistical Relation : $Y=f(X)+\epsilon$ where $\epsilon$ is an (random) error term
- variation in $Y$ that is not associated with $X$ and that is considered to be of a random nature
- all data points do not fall directly on the line of relationship


Figure 1.1(KNN)
Y (dollar sales of a product)
X(\# of units sold)


Figure 1.2(KNN)
$Y$ (Year-end evaluation)
X (midyear evaluation)


Figure 1.3(KNN)
Y (level of a steroid in plasma)
$X$ (age)

### 1.2 Regression Models and Their Uses

1) Purpose of regression models

- determine the magnitude of the (typically imperfect) relationship between $Y$ and a set of $X$ s
- predict $Y$ from a set of $X$ s

2) Basic concepts

- A tendency of $Y$ to vary with $X$ in a systematic fashion
- A scattering of points around the curve of statistical relationship
- Probability distribution of $Y$ for each level of $X: f(Y \mid X=x)$
- Regression function of $Y$ on $\mathrm{X}, E(Y \mid X) \equiv \int y f(Y \mid X) d y$ : the means of these probability distributions of $Y$ vary in some systematic fashion with $X$ and it is a function of $X$

$$
Y=f(X)+\epsilon=E(Y \mid X)+\epsilon
$$


3) Construction of Regression Models

- Selection of a set of "good" Xs
- Functional form of regression relation
- Scope of regression model
- Regression and Causality

4) Data for regression analysis

- Observational data from nonexperimental studies that do not control $X$ s of interest
- no adequate information about cause-and-effect relationships
- Experimental data from experimental studies that control $X$ s of interest through randomization
- stronger information about cause-and-effect relationships
- randomization balancing out the effects of other predictors that might affect $Y$


### 1.3 Simple Linear Regression Model with Distribution of Error Terms Unspecified

$$
\begin{equation*}
Y_{i}=E\left(Y_{i} \mid X_{i}\right)+\epsilon_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

- Assumptions
- $Y_{i}$ is the $i$-th value of the response variable
- $X_{i}$ is the i -th known value of the predictor variable (constant)
- $\beta_{0}$ and $\beta_{1}$ are parameters (unknown constant) (regression coefficients)
- $\epsilon_{i}$ is an uncorrelated random error term with $E\left(\epsilon_{i}\right)=0, \sigma^{2}\left(\epsilon_{i}\right)=\sigma^{2}$ and $\sigma\left(\epsilon_{i}, \epsilon_{j}\right)=0$
So, $E\left(Y_{i}\right)=\quad, \sigma^{2}\left(Y_{i}\right)=\quad, \sigma\left(Y_{i}, Y_{j}\right)=$
- simple : there is only one $X$ (multiple : \# of X in the model $>1$ )
- linear in the parameters
- $\beta_{0}, \beta_{1}$ and $\sigma^{2}$ are the unknown parameters.
- Meaning of regression coefficients, $\beta_{0}$ and $\beta_{1}$
- $\beta_{1}=$ the slope (the change in the mean of the probability distribution of $Y$ per unit increase in $X$ )
- $\beta_{0}=$ the intercept (the mean of the probability distribution of $Y$ at $X=0$ )

- Features
- $Y_{i}$ is a random variable (why?)
- mean response (regression function), $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}$
- $\sigma^{2}\left(Y_{i}\right)=\sigma^{2}$ : each probability distribution of $Y$ has the same variance $\sigma^{2}$
- $\sigma\left(Y_{i}, Y_{j}\right): Y_{i}$ and $Y_{j}$ are uncorrelated
$\rightarrow Y_{i}$ comes from probability distributions whose means are $\beta_{0}+\beta_{1} X_{i}$ and whose variances are $\sigma^{2}$, the same for all levels of $X$. In addition, $Y_{i}$ and $Y_{j}$ are uncorrelated.
- Alternative versions of $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{0} X_{0}+\beta_{1} X_{i}$ where $\beta_{0} \equiv 1$
- $Y_{i}=\beta_{0}^{\star}+\beta_{1}\left(X_{i}-\bar{X}\right)$ where $\beta_{0}^{\star}=\beta_{0}+\beta_{1} \bar{X}$


### 1.5 Overview of Steps in Regression Analysis



### 1.6 Estimation of $\beta_{0}, \beta_{1}$ and $\sigma^{2}$

For the observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{i}, Y_{i}\right), \ldots,\left(X_{n}, Y_{n}\right)$,

- Use the method of least squares to obtain estimators of $\beta_{0}$ and $\beta_{1}$
[Idea] the estimators of $\beta_{0}$ and $\beta_{1}$ are those values $b_{0}$ and $b_{1}$, respectively, minimizing $Q$

$$
Q=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-E\left(Y_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
$$

where $Y_{i}-\beta_{0}-\beta_{1} X_{i}$ is the deviation of $Y_{i}$ from its expected value


- Least Squares estimators for $\beta_{0}$ and $\beta_{1}$ are

$$
b_{1}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}, \quad b_{0}=\bar{Y}-b_{1} \bar{X}
$$

- How? solve $\frac{\partial Q}{\partial \beta_{0}}=0$ and $\frac{\partial Q}{\partial \beta_{1}}=0$ simultaneously
- Meaning of $b_{1}$ and $b_{0}$
(Study example) Suppose one is interested in the relationship between the number of hours $(X)$ given for study and score on a test $(Y)$. Given 20 observations ( $X_{i}, Y_{i}$ ), a simple linear regression was applied, and $\beta_{1}$ and $\beta_{0}$ using the method of least squares were calculated : $b_{1}=3.5$ and $b_{0}=15.05$
- students score $\qquad$ on average when they did not study
- adding an additional hour to your study time will result in an average score of __ point higher
- Properties of $b_{0}$ and $b_{1}$
- $b_{0}$ and $b_{1}$ are BLUE(Best Linear Unbiased Estimator)
- Point estimation of $E(Y)=\beta_{0}+\beta_{1} X$
- Given $b_{0}$ and $b_{1}$, the estimated regression function at $X$ is

$$
\begin{equation*}
\hat{Y}=b_{0}+b_{1} X \tag{2}
\end{equation*}
$$

so, $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$ where $i=1, \ldots, n$ (called as the $i$-th fitted value)
(e.g.) In our (Study example), $\hat{Y}=15.05+3.5 X$. For a student studying 4 hours, the expected score on the exam is

- Residuals, $e_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-b_{0}-b_{1} X_{i}$
- vertical deviation of $Y_{i}$ from the corresponding fitted value $\hat{Y}_{i}$
- difference between $\epsilon_{i}=Y_{i}-E\left(Y_{i}\right)$ and $e_{i}=Y_{i}-\hat{Y}_{i}$
- very very useful for studying an estimated regression model is suitable for the $n$ observations ( $X_{i}, Y_{i}$ ) (Chapter 3)
- Properties of $e_{i}$ and $\hat{Y}_{i}$
- $\sum_{i} e_{i}=0$ and $\sum_{i} e_{i}^{2}$ is a minimum
- mean of $\hat{Y}_{i}=\bar{Y}$, i.e., $\frac{1}{n} \sum_{i} \hat{Y}_{i}=\frac{1}{n} \sum_{i} Y_{i}$
- $\sum_{i} X_{i} e_{i}=0$ and $\sum_{i} \hat{Y}_{i} e_{i}=0$
- the regression line goes through the point $(\bar{X}, \bar{Y})$
- Point Estimation of $\sigma^{2}(Y)=\sigma^{2}(\epsilon)=\sigma^{2}$
- $Y_{i}$ from different probability distributions with different means depending on $X_{i}$ - deviation of $Y_{i}$ from $\hat{Y}_{i}: e_{i}=Y_{i}-\hat{Y}_{i}$
$\cdot s^{2}=M S E=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}$ where MSE is residual mean square and SSE is residual sum of squares: an estimator for $\sigma^{2}$
- $E\left(s^{2}\right)=\sigma^{2}$
. $s=\sqrt{s^{2}}$ for the standard deviation $\sigma=\sqrt{\sigma^{2}}$


### 1.8 Simple Linear Regression Model with Normal Distribution

## Error Terms

- Method of least squares
- only know $E\left(\epsilon_{i}\right)=0$ and $\sigma^{2}\left(\epsilon_{i}\right)=\sigma^{2}$ (the distribution of the $\epsilon_{i}$ is unspecified) - $b_{1}$ and $b_{0}$ are BLUE for $\beta_{0}$ and $\beta_{1}$ in Eq. (1), and $s^{2}=M S E=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$ is an unbiased estimator for $\sigma^{2}$
- One more assumption about the distribution of the $\epsilon_{i}$ in $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- need for interval estimators and hypothesis testing
- $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and $\sigma\left(\epsilon_{i}, \epsilon_{j}\right)=0$ (uncorrelatedness implies independence between $\epsilon_{i}$ and $\epsilon_{j}$.
Then, $Y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)$,
and $\sigma\left(Y_{i}, Y_{j}\right)=0$
(so, $Y_{i}$ and $Y_{j}$ are independent).


Figure 1.6 (KNN)

- Estimation of $\beta_{0}, \beta_{1}$ and $\sigma^{2}$ in $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ when $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and $\sigma\left(\epsilon_{i}, \epsilon_{j}\right)=0$
- use Method of Maximum Likelihood
[Idea] construct the likelihood function of $\beta_{0}, \beta_{1}$ and $\sigma^{2}, L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$, and find values of the parameters maximizing the $\log$ of $L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right), \ell\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$
: Since $Y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right), f\left(Y_{i} ; \beta_{0}, \beta_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{Y_{i}-\beta_{0}-\beta_{1} X_{i}}{\sigma}\right)^{2}\right]$.
Then the (log) likelihood function is
$L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\prod_{i=1}^{n} f\left(Y_{i} ; \beta_{0}, \beta_{1}, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}\right]$
$\ell\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\log L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}$
Then solve $\frac{\partial \ell\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)}{\partial \beta_{0}}=0, \frac{\partial \ell\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)}{\partial \beta_{1}}=0$ and $\frac{\partial \ell\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)}{\partial \sigma^{2}}=0$ simultaneously.
- Estimators for $\beta_{0}, \beta_{1}$ and $\sigma^{2}$ and their properties

Parameter Method of Least Squares Method of Maximum Likelihood

$$
\begin{array}{ccc}
\hline \beta_{1} & b_{1}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}} & \hat{\beta}_{1}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}} \\
\beta_{0} & b_{0}=\bar{Y}-b_{1} \bar{X} & \hat{\beta}_{0}=\bar{Y}-b_{1} \bar{X} \\
\sigma^{2} & s^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2} & \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n}
\end{array}
$$

- $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are unbiased, sufficient and consistent
- $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ have minimum variance among all unbiased (linear or otherwise) estimators
. $s^{2}$ is unbiased, but $\hat{\sigma}^{2}$ is biased for finite $n$.


## Calculate the regression coefficients and MSE with R

```
>x=c (-1,0, -2,-3)
>y=c ( }-5,-4,2,-7
>b_1=cov (x,y)/var (x)
>b_1
[1] 0.2
> b_0=mean (y) -b_1 *mean (x)
> b_0
[1] -3.2
>yhat=b_0+b_1*x
>yhat
[1] -3.4 -3.2 -3.6 -3.8
> n=length(y)
> n
[1] 4
> MSE
[1] 9.860761e-32
```

$>\operatorname{MSE}=\operatorname{sum}(\mathrm{y} \text {-yhat) })^{\wedge} 2 /(\mathrm{n}-2) \quad$ \#to introduce $\mathrm{MSE}=\mathrm{S}^{\wedge} 2$ as a variable

```
#to introduce a variable
#to calculatee b1
#to call the value of b1
#to calculate b0
#to call the value of b0
#to introduce the regression model
#to call the value of yhat
#to introduce the number of observations
#to call the value of n
#to call the value of MSE
```

