Stat 525 Regression Analysis

Lecture 1 : Linear Regression with One Predictor Variable

Zheni Utic Department of Mathematics and Statistics, University of Massachusetts Amherst

▲□ → ▲□ → ▲目 → ▲目 → ● ● ● ● ● ●

Outline

- Relations between Two Variables
- Regression Models and Their Uses
- Simple Linear Regression Model with Distribution of Error Terms Unspecified
- Overview of Steps in Regression Analysis
- Point estimation of $E(Y) = \beta_0 + \beta_1 X$
- Point estimation of $\sigma^2(Y) = \sigma^2$
- Simple Linear Regression Model with Normal Distribution Error Terms

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

1.1 Variable Types and Relations between Two Variables

Dependent vs. Independent

- Independent variable(X) : predictor, explanatory variable
 - \cdot manipulated or changed by the experimenter
 - \cdot influences the dependent variable
- Dependent variable(Y) : response variable, outcome variable
 - \cdot observed result of the independent variable being manipulated
 - · we want to predict

(e.g.) A call center where the number of customers serviced per hour, depends on the number of agents, and average service time per customer.

Quantitative vs. Qualitative

Quantitative variable

 \cdot naturally measured as a number for which meaningful arithmetic operations make sense.

- \cdot discrete variable and continuous variable
- Qualitative variable : categorical Variable

 \cdot have no numerical meaning and take a value that is one of several possible categories $(\Box) + (\Box) + (\Box)$

3

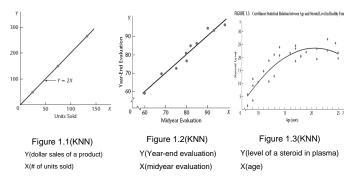
If X is an independent and quantitative variable and Y is a dependent and quantitative variable,

- Functional Relation : Y = f(X)
- Statistical Relation : $Y = f(X) + \epsilon$ where ϵ is an (random) error term

 \cdot variation in Y that is not associated with X and that is considered to be of a random nature

4

 \cdot all data points do not fall directly on the line of relationship

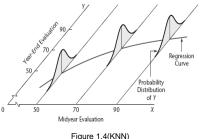


1.2 Regression Models and Their Uses

- 1) Purpose of regression models
 - determine the magnitude of the (typically imperfect) relationship between Y and a set of Xs
 - predict Y from a set of Xs
- 2) Basic concepts
 - A tendency of Y to vary with X in a systematic fashion
 - A scattering of points around the curve of statistical relationship
 - · Probability distribution of Y for each level of X : f(Y | X = x)

• Regression function of Y on X, $E(Y | X) \equiv \int y f(Y | X) dy$: the means of these probability distributions of Y vary in some systematic fashion with X and it is a function of X

 $\cdot Y = f(X) + \epsilon = E(Y \mid X) + \epsilon$



- 3) Construction of Regression Models
 - Selection of a set of "good" Xs
 - Functional form of regression relation
 - Scope of regression model
 - Regression and Causality
- 4) Data for regression analysis
 - Observational data from nonexperimental studies that do not control Xs of interest
 - · no adequate information about cause-and-effect relationships
 - Experimental data from experimental studies that control *X*s of interest through randomization
 - \cdot stronger information about cause-and-effect relationships
 - · randomization balancing out the effects of other predictors that might affect Y

1.3 Simple Linear Regression Model with Distribution of Error Terms Unspecified

$$Y_i = E(Y_i \mid X_i) + \epsilon_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad i = 1, \dots, n$$
(1)

- Assumptions
 - \cdot Y_i is the i-th value of the response variable
 - $\cdot X_i$ is the i-th known value of the predictor variable (constant)
 - $\cdot \beta_0$ and β_1 are parameters (unknown constant) (regression coefficients)

 $\cdot \epsilon_i$ is an uncorrelated random error term with $E(\epsilon_i) = 0$, $\sigma^2(\epsilon_i) = \sigma^2$ and $\sigma(\epsilon_i, \epsilon_j) = 0$

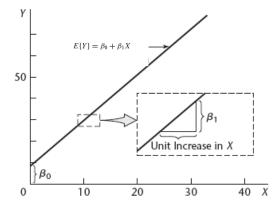
So,
$$E(Y_i) = \sigma^2(Y_i) = \sigma(Y_i, Y_j) =$$

- \cdot simple : there is only one X (multiple : # of X in the model >1)
- · linear in the parameters
- \cdot $\beta_{\rm 0},$ $\beta_{\rm 1}$ and $\sigma^{\rm 2}$ are the unknown parameters.

• Meaning of regression coefficients, β_0 and β_1

 $\cdot \beta_1$ = the slope (the change in the mean of the probability distribution of *Y* per unit increase in *X*)

 $\beta_0 =$ the intercept (the mean of the probability distribution of *Y* at *X* = 0)



8

Features

- · Y_i is a random variable (why?)
- · mean response (regression function), $E(Y_i) = \beta_0 + \beta_1 X_i$

 $\sigma^2(Y_i) = \sigma^2$: each probability distribution of Y has the same variance σ^2

 $\cdot \sigma(Y_i, Y_j)$: Y_i and Y_j are uncorrelated

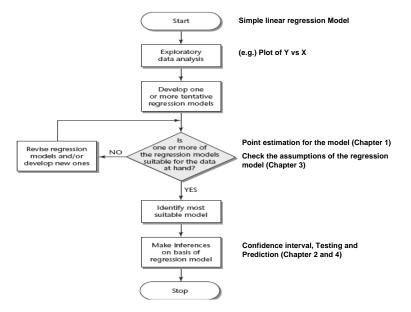
 \rightarrow *Y_i* comes from probability distributions whose means are $\beta_0 + \beta_1 X_i$ and whose variances are σ^2 , the same for all levels of *X*. In addition, *Y_i* and *Y_j* are uncorrelated.

• Alternative versions of $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

$$\cdot Y_i = \beta_0 X_0 + \beta_1 X_i$$
 where $\beta_0 \equiv 1$

$$\cdot Y_i = \beta_0^\star + \beta_1 (X_i - \bar{X})$$
 where $\beta_0^\star = \beta_0 + \beta_1 \bar{X}$

1.5 Overview of Steps in Regression Analysis



<ロト

1.6 Estimation of β_0 , β_1 and σ^2

For the observations $(X_1, Y_1), \ldots, (X_i, Y_i), \ldots, (X_n, Y_n),$

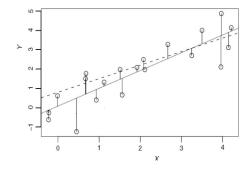
Use the method of least squares to obtain estimators of β₀ and β₁

[Idea] the estimators of β_0 and β_1 are those values b_0 and b_1 , respectively, minimizing Q

$$Q = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - E(Y_i))^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

where $Y_i - \beta_0 - \beta_1 X_i$ is the deviation of Y_i from its expected value



• Least Squares estimators for β_0 and β_1 are

$$b_{1} = \frac{\sum_{i}(X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i}(X_{i} - \bar{X})^{2}} = \frac{\sum_{i}(X_{i} - \bar{X})Y_{i}}{\sum_{i}(X_{i} - \bar{X})^{2}}, \quad b_{0} = \bar{Y} - b_{1}\bar{X}$$

 \cdot How? solve $\frac{\partial Q}{\partial\beta_0}=0$ and $\frac{\partial Q}{\partial\beta_1}=0$ simultaneously

Meaning of b₁ and b₀

(Study example) Suppose one is interested in the relationship between the number of hours (*X*) given for study and score on a test (*Y*). Given 20 observations (X_i , Y_i), a simple linear regression was applied, and β_1 and β_0 using the method of least squares were calculated : $b_1 = 3.5$ and $b_0 = 15.05$

- students score ____ on average when they did not study
- adding an additional hour to your study time will result in an average score of point higher

- Properties of b₀ and b₁
 - \cdot *b*₀ and *b*₁ are BLUE(Best Linear Unbiased Estimator)
- Point estimation of $E(Y) = \beta_0 + \beta_1 X$

· Given b_0 and b_1 , the estimated regression function at X is

$$\hat{Y} = b_0 + b_1 X \tag{2}$$

so, $\hat{Y}_i = b_0 + b_1 X_i$ where i = 1, ..., n (called as the i-th fitted value)

(e.g.) In our (Study example), $\hat{Y} = 15.05 + 3.5X$. For a student studying 4 hours, the expected score on the exam is

• Residuals,
$$e_i = Y_i - \hat{Y}_i = Y_i - b_0 - b_1 X_i$$

- · vertical deviation of Y_i from the corresponding fitted value \hat{Y}_i
- · difference between $\epsilon_i = Y_i E(Y_i)$ and $e_i = Y_i \hat{Y}_i$

· very very useful for studying an estimated regression model is suitable for the *n* observations (X_i, Y_i) (Chapter 3)

- Properties of e_i and \hat{Y}_i
 - $\sum_{i} e_{i} = 0$ and $\sum_{i} e_{i}^{2}$ is a minimum
 - · mean of $\hat{Y}_i = \bar{Y}$, i.e., $\frac{1}{n} \sum_i \hat{Y}_i = \frac{1}{n} \sum_i Y_i$

$$\sum_{i} X_i e_i = 0$$
 and $\sum_{i} \hat{Y}_i e_i = 0$

- · the regression line goes through the point (\bar{X}, \bar{Y})
- Point Estimation of σ²(Y) = σ²(ε) = σ²
 - · Y_i from different probability distributions with different means depending on X_i
 - · deviation of Y_i from \hat{Y}_i : $e_i = Y_i \hat{Y}_i$
 - $\cdot s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2}{n-2}$ where *MSE* is residual mean square and *SSE* is residual sum of squares : an estimator for σ^2
 - $\cdot E(s^2) = \sigma^2$ $\cdot s = \sqrt{s^2}$ for the standard deviation $\sigma = \sqrt{\sigma^2}$

1.8 Simple Linear Regression Model with Normal Distribution

Error Terms

Method of least squares

· only know $E(\epsilon_i) = 0$ and $\sigma^2(\epsilon_i) = \sigma^2$ (the distribution of the ϵ_i is unspecified)

· b_1 and b_0 are BLUE for β_0 and β_1 in Eq. (1), and $s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$ is an unbiased estimator for σ^2

• One more assumption about the distribution of the ϵ_i in $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

 \cdot need for interval estimators and hypothesis testing

 $\epsilon_i \sim N(0, \sigma^2)$ and $\sigma(\epsilon_i, \epsilon_j) = 0$ (uncorrelatedness implies independence between ϵ_i and ϵ_j .

Then,
$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$
,

and $\sigma(Y_i, Y_j) = 0$

(so, Y_i and Y_j are independent).

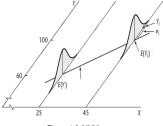


Figure 1.6 (KNN)

- Estimation of β_0 , β_1 and σ^2 in $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ when $\epsilon_i \sim N(0, \sigma^2)$ and $\sigma(\epsilon_i, \epsilon_j) = 0$
 - use Method of Maximum Likelihood

[Idea] construct the likelihood function of β_0 , β_1 and σ^2 , $L(\beta_0, \beta_1, \sigma^2)$, and find values of the parameters maximizing the log of $L(\beta_0, \beta_1, \sigma^2)$, $\ell(\beta_0, \beta_1, \sigma^2)$

: Since $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$, $f(Y_i; \beta_0, \beta_1, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{Y_i - \beta_0 - \beta_1 X_i}{\sigma}\right)^2\right]$. Then the (log) likelihood function is

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f(Y_i; \beta_0, \beta_1, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2\right]$$
$$\ell(\beta_0, \beta_1, \sigma^2) = \log L(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2$$

Then solve $\frac{\partial \ell(\beta_0,\beta_1,\sigma^2)}{\partial \beta_0} = 0$, $\frac{\partial \ell(\beta_0,\beta_1,\sigma^2)}{\partial \beta_1} = 0$ and $\frac{\partial \ell(\beta_0,\beta_1,\sigma^2)}{\partial \sigma^2} = 0$ simultaneously.

• Estimators for β_0 , β_1 and σ^2 and their properties

Parameter	Method of Least Squares	Method of Maximum Likelihood
β_1	$b_1 = rac{\sum_i (X_i - ar{X})(Y_i - ar{Y})}{\sum_i (X_i - ar{X})^2}$	$\hat{\beta}_1 = \frac{\sum_i (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_i (X_i - \bar{X})^2}$
β_0	$b_0 = \overline{\bar{Y}} - b_1 \overline{X}$	$\hat{eta}_0 = ar{ar{f V}} - brea_1 ar{f X} \ \hat{f C}^2 = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$
σ^2	$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-2}$	$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n}$

 \cdot \hat{eta}_1 and \hat{eta}_0 are unbiased, sufficient and consistent

 \cdot $\hat{\beta}_{\rm 1}$ and $\hat{\beta}_{\rm 0}$ have minimum variance among all unbiased (linear or otherwise) estimators

 \cdot *s*² is unbiased, but $\hat{\sigma}^2$ is biased for finite *n*.

Calculate the regression coefficients and MSE with R

```
>x=c(-1,0,-2,-3)
                           #to introduce a variable
>v=c(-5,-4,2,-7)
>b 1=cov(x,y)/var(x)
                           #to calculatee b1
>b 1
                            #to call the value of b1
[1] 0.2
> b_0=mean(y)-b_1*mean(x) #to calculate b0
> b 0
                            #to call the value of b0
[1] -3.2
>yhat=b 0+b 1*x
                            #to introduce the regression model
                            #to call the value of yhat
>yhat
[1] -3.4 -3.2 -3.6 -3.8
                            #to introduce the number of observations
> n=length(y)
                            #to call the value of n
> n
[1] 4
> MSE=sum(y-yhat)^2/(n-2)
                          #to introduce MSE=S^2 as a variable
                            #to call the value of MSE
> MSE
[1] 9.860761e-32
```