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Statistics : population and sample

Statistics

- make generalizations (inference) about the characteristics of a
population based on information contained in a sample from that
population.

i) selection of the sample from the population of our interest

ii) statistical inference about the characteristics of the population

Selection of the sample from the population of our interest

- The population is the collection of all elements (individuals, items, or
objects) whose characteristics are being studied.

Our interest is to study characteristics of (the units of) the population.
(Unknown) quantifiable properties of a characteristic of interest (e.g., an
average or a proportion) are called parameters (denoted by θ)

- Due to cost and time considerations, we typically obtain a sample, a
portion of the population selected for study (a representative sample).
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- A variable is a characteristic under study that is (quantitative/qualitative)
quantity and assume different values for different elements.

A random variable (denoted by a capital letter such as X , or Y ) is the a
priori unknown value of the variable of an element randomly sampled
from a population.

- We randomly take a sample of n elements from the population and
record the variable of each sampled element. Henceforth, the word
random sample consists of unknown a priori numbers (so random
variables).

X1,X2, . . . ,Xn represents a random sample of size n and x1, x2, . . . , xn
are observed values of X1,X2, . . . ,Xn when the study is carried out.

- Usually assume that X1,X2, . . . ,Xn is a random sample from a
population with probability distribution f (x ; θ)

3



Mercury study

Suppose we are interested in estimating the average/mean Mercury
concentration µ in a lake. We decide to obtain 50 water samples drawn
from a lake (by using a suitable sampling method)

- population : all water samples that can be taken from a lake

- sample : a subset of all water samples

- parameter : mean Mercury concentration µ in the lake

- random variable (denoted by X ): Mercury concentration (quantitative)

- X1, . . . ,X50 : a random sample of size 50 from the population
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Statistics : statistical inference and its tools

Statistical inference about the unknown parameters using X1, . . . ,Xn

- generalizes the information contained in the sample to the population,

assess how closely sample characteristics resemble population
characteristics,

assess the likelihood of making wrong decisions regarding the true value
of population parameters

Tools for statistical inference

- point and interval estimation

- hypothesis testing

- prediction

- more..

5



Statistical inference - point estimation
Suppose X1, . . . ,Xn be a random sample from a population with θ or f (x ; θ).

A statistic is a function of X1, . . . ,Xn and known constants (i..e, random
variable) and has a probability distribution under repeated sampling of
the population (called sampling distribution). The sampling distribution of
a statistic is the population of all possible values for that statistic.

(e.g.) assume we repeatedly take samples of a given size from the
population and calculate the sample mean, x̄ for each sample. Different
samples will lead to different sample means. The distribution of these
means is the “sampling distribution of X̄ ” (for the given sample size).

Point estimator for θ

- a statistic is used as an estimator θ̂ = θ̂(X1, . . . ,Xn) (a formula) for θ and
θ̂ has its sampling distribution

an estimate θ̂(x1, . . . , xn) is a specific value of the estimator at x1, . . . , xn

a standard error for θ̂, dev(θ̂), is a square root of variance of θ̂,
√

dev2(θ̂)
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(e.g.) suppose X1, . . . ,Xn be a random sample from a population with
mean µ = E(Xi ) and variance σ2 = Var(Xi ).

i) sample mean µ̂ = X̄ = 1
n

∑n
i=1 Xi for µ, and its standard error is

√
σ2/n

ii) sample variance σ̂2 = s2 = 1
n−1

∑n
i=1(Xi − X̄ )2 for σ2

iii) sample standard deviation s =
√

s2 for σ

(e.g.) suppose X1, . . . ,Xn be a random sample from a population with
N(µ, σ2).

What is the sampling distribution of µ̂ = X̄?
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Properties of point estimator θ̂

- MSE(Mean Square Error) of θ̂ = E
[
(θ̂ − θ)2

]
= σ2(θ̂) + Bias(θ̂)2 where

Bias(θ̂) = E(θ̂)− θ

- unbiasedness and minimum variance

Estimation method

- Method of Maximum Likelihood

(e.g.) suppose X1, . . . ,Xn be a random sample from a population with
N(µ, σ2) where σ2 is known we can for example find an estimator for µ
using Method of Maximum Likelihood.

- Method of Least Squares

(e.g.) suppose X1, . . . ,Xn be a random sample from a population with
mean µ = E(Xi ). We can find an estimator for µ using Method of Least
Squares.
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Statistical inference - interval estimation
Suppose X1, . . . ,Xn be a random sample from a population with θ.

100(1− α)% (two-sided) confidence interval for θ, [θ̂L, θ̂U ]

- θ̂L = θ̂L(X1, . . . ,Xn), θ̂U = θ̂U(X1, . . . ,Xn)

- a random interval of enclosing θ with a probability (1− α) under
repeated sampling :

1− α (confidence coefficient) = P(θ̂L ≤ θ ≤ θ̂U)= fraction of the time, in
repeated sampling, that [θ̂L, θ̂U ] will contain θ.

Large-sample confidence intervals (by using Central Limit Theorem)

- useful when n is large and there is no distribution assumption on
X1, . . . ,Xn

- Approximate probability distribution of θ̂−θσθ̂
is a standard normal

distribution, N(0,1) as long as n is large (i.e., θ̂−θσθ̂
∼approx N(0,1))

Then a (approximate) 100(1− α)% two-sided confidence interval for θ is
[θ̂L, θ̂U ] = [θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂]
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Confidence intervals under the normal populations

1) Suppose X1, . . . ,Xn be a random sample from N(µ, σ2).

i) 100(1− α)% confidence intervals for µ by using X̄−µ
s/
√

n ∼ t(n − 1)

: [ X̄ − t(1− α/2; n − 1)s/
√

n, X̄ + t(1− α/2; n − 1)s/
√

n ]

ii) 100(1− α)% confidence intervals for σ2 by using (n−1)s2

σ2 ∼ χ2(n − 1)

:
[

(n−1)s2

χ2(1−α/2;n−1)
, (n−1)s2

χ2(α/2;n−1)

]
2) Suppose X1, . . . ,Xn1 be a random sample from N(µ1, σ

2) and
Y1, . . . ,Yn2 be a random sample from N(µ2, σ

2).

i) 100(1− α)% confidence intervals for µ1 − µ2 by using
(X̄−Ȳ )−(µ1−µ2)√

s2
p( 1

n1
+ 1

n2
)
∼ t(n1 + n1 − 2) where s2

p =
∑n1

i=1(Xi−X̄)2+
∑n2

i=1(Yi−Ȳ )2

n1+n2−2

:
[

(X̄ − Ȳ ) − t(1 − α/2; n1 + n2 − 2)

√
s2

p

(
1

n1
+ 1

n2

)
, (X̄ − Ȳ ) + t(1 − α/2; n1 + n2 − 2)

√
s2

p

(
1

n1
+ 1

n2

)]
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3) Suppose X1, . . . ,Xn1 be a random sample from N(µ1, σ
2
1) and

Y1, . . . ,Yn2 be a random sample from N(µ2, σ
2
2).

i) 100(1− α)% confidence intervals for σ
2
1
σ2

2
by using

s2
1/σ

2
1

s2
2/σ

2
2
∼ F (n1 − 1,n2 − 1) where s2

1 =
∑n1

i (Xi−X̄)2

n1−1 and s2
2 =

∑n2
i (Yi−Ȳ )2

n2−1

:
[

s2
1

s2
2

1
F (1−α/2;n1−1,n2−1) ,

s2
1

s2
2

1
F (α/2;n1−1,n2−1)

]
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Statistical inference - hypothesis testing

Suppose X1, . . . ,Xn be a random sample from a population with f (x ; θ).

Elements of a statistical test

1) Hypothesis

: null hypothesis, H0 (what we would like to refute). e.g., H0 : θ = θ0

: alternative hypothesis Ha (what we would like to support by evidence
in the sample). e.g., Ha : θ 6= θ0 (two-sided) or Ha : θ > θ0 (one-sided)

2) Test statistic, U = U(X1, . . . ,Xn)

: a function of the random sample whose distribution under H0 (null
distribution) is known and can thus be used as reference

: we can reject H0 in favor of Ha if the observed value of U,
uobs ≡ u(x1, . . . , xn) is very extreme with respect to what one would
expect under the null distribution

12



3) Probability of making mistake

: α=P(Type I error)=P(false positive)=P(reject H0 | H0 is true)

(level or significance level)

: β=P(Type II error)=P(false negative)=P(not reject H0 | Ha is true)

: power of the test = 1-β (so power function = a function expressing
power for each value in Ha)

: α and β are in trade-off; test statistics are evaluated based on their
power function, once α is fixed

4) Decision rule

Suppose α is fixed.

i) use Rejection Region(RR) associated with U and α, RRα

: RRα specifies the values of U for which H0 is to be rejected in favor
of Ha. So the rule is as follows : first, compute the value of the test
statistic for an observed sample, uobs. If uobs falls in the RR, reject H0.
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ii) use the p-value

: the p-value associated with uobs is the probability that, under H0, U
would take the observed value uobs, or a value even more extreme in the
direction defined by the Ha.

(e.g.) if the null distribution of U is symmetric and Ha is two-sided, the
p-value is

: the smaller the p-vaule, the stronger the evidence against H0

: reject H0 if the computed p-value ≤ α

Review Appendix A.6-A.9 in KNN and solve self-test questions
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Statistical modeling

The structural form of the model describes the patterns of interactions and
associations between the variables of interest. The model parameters
provide measures of strength of associations. In models, the focus is on
inference on the model parameters. The basic inference tools (e.g., point
estimation, confidence intervals and hypothesis testing) will be applied to
these parameters.

Objective

Model structure (e.g. variables, formula, equation)

Model assumptions

Inference on model parameter and interpretation

Model fit (e.g. goodness-of-fit)

Model selection
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