
Definition of minimal surface

A surface f : M → R3 is minimal if:

M has MEAN CURVATURE = 0.

Small pieces have LEAST AREA.

Small pieces have LEAST ENERGY.

Small pieces occur as SOAP FILMS.

Coordinate functions are HARMONIC.

Conformal Gauss map

G : M → S2 = C ∪ {∞}.
MEROMORPHIC GAUSS MAP



Meromorphic Gauss map



Weierstrass Representation

Suppose f : M ⊂ R3 is minimal,

g : M → C ∪ {∞},

is the meromorphic Gauss map,

dh = dx3 + i ∗ dx3,

is the holomorphic height differential. Then
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Helicoid Image by Matthias Weber

M = C

dh = dz = dx+i dy

g(z) = eiz



Catenoid Image by Matthias Weber

M = C− {(0, 0)}

dh =
1

z
dz

g(z) = z



Finite topology minimal surfaces with 1 end

Theorem (Meeks, Rosenberg)

A complete, embedded, simply-connected minimal
surface in R3 is a plane or a helicoid.

Theorem (Meeks, Rosenberg)

Every properly embedded, non-planar minimal
surface in R3 with finite genus and one end has the
conformal structure of a compact Riemann surface
Mg of genus g minus one point, can be represented
by meromorphic data on Mg and is asymptotic to
a helicoid.



Finite topology minimal surfaces

Theorem (Collin)

If M ⊂ R3 is a properly embedded minimal surface with more
than one end, then each annular end of M is asymptotic to
the end of a plane or a catenoid. In particular, if M has
finite topology and more than one end, then M has finite total
Gaussian curvature.

Theorem (Meeks, Rosenberg)

Every properly embedded, non-planar minimal surface in R3/G
with finite genus has the conformal structure of a compact
Riemann surface Mg of genus g punctured in a finite number
of points and can be represented by meromorphic data on Mg .
Each annular end is asymptotic to the quotient of a
half-helicoid (helicoidal), a plane (planar) or a half-plane
(Scherk type).



Properness of finite genus/topology examples

Theorem (Colding, Minicozzi)

A complete, embedded minimal surface of finite
topology in R3 is properly embedded.

Theorem (Meeks, Perez, Ros)

A complete, embedded minimal surface of finite
genus and a countable number of ends in R3 or in
R3/G is properly embedded.



Catenoid. Image by Matthias Weber

Key Properties:

In 1741, Euler discovered that when a catenary x1 = cosh x3 is
rotated around the x3-axis, then one obtains a surface which
minimizes area among surfaces of revolution after prescribing
boundary values for the generating curves.

In 1776, Meusnier verified that the catenoid has zero mean
curvature.

This surface has genus zero, two ends and total curvature −4π.



Catenoid. Image by Matthias Weber

Key Properties:

Together with the plane, the catenoid is the only minimal surface of
revolution (Euler and Bonnet).

It is the unique complete, embedded minimal surface with genus
zero, finite topology and more than one end (López and Ros).

The catenoid is characterized as being the unique complete,
embedded minimal surface with finite topology and two ends
(Schoen).



Helicoid. Image by Matthias Weber

Key Properties:

Proved to be minimal by Meusnier in 1776.

The helicoid has genus zero, one end and infinite total curvature.

Together with the plane, the helicoid is the only ruled minimal
surface (Catalan).

It is the unique simply-connected, complete, embedded minimal
surface (Meeks and Rosenberg, Colding and Minicozzi).



Enneper surface. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C, g(z) = z , dh = z dz .

Discovered by Enneper in 1864, using his newly formulated analytic
representation of minimal surfaces in terms of holomorphic data,
equivalent to the Weierstrass representation.

This surface is non-embedded, has genus zero, one end and total
curvature −4π.

It contains two horizontal orthogonal lines and the surface has two
vertical planes of reflective symmetry.



Meeks minimal Möbius strip. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C− {0}, g(z) = z2
(

z+1
z−1

)
,

dh = i
(

z2−1
z2

)
dz .

Found by Meeks in 1981, the minimal surface defined by this
Weierstrass pair double covers a complete, immersed minimal
surface M1 ⊂ R3 which is topologically a Möbius strip.

This is the unique complete, minimally immersed surface in R3 of
finite total curvature −6π (Meeks).



Bent helicoids. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C− {0}, g(z) = −z zn+i
izn+i

, dh = zn+z−n

2z
dz .

Discovered in 2004 by Meeks and Weber and independently by Mira.



Costa torus. Image by Matthias Weber

Key Properties:

Weierstrass Data: Based on the square torus
M = C/Z2 − {(0, 0), ( 1

2 , 0), (0, 1
2 )}, g(z) = P(z).

Discovered in 1982 by Costa.

This is a thrice punctured torus with total curvature −12π, two
catenoidal ends and one planar middle end. Hoffman and Meeks proved
its global embeddedness.

The Costa surface contains two horizontal straight lines l1, l2 that
intersect orthogonally, and has vertical planes of symmetry bisecting the
right angles made by l1, l2.



Costa-Hoffman-Meeks surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: Defined in terms of cyclic covers of S2
.

These examples Mk generalize the Costa torus, and are complete,
embedded, genus k minimal surfaces with two catenoidal ends and one
planar middle end. Both existence and embeddedness were given by
Hoffman and Meeks.



Deformation of the Costa torus. Image by M. Weber

Key Properties:
The Costa surface is defined on a square torus M1,1, and
admits a deformation (found by Hoffman and Meeks,
unpublished) where the planar end becomes catenoidal.
For any a ∈ (0,∞), take M = M1,a (which varies on
arbitrary rectangular tori), a = 1 gives the Costa torus.
Hoffman and Karcher proved existence/embeddedness.



Genus-one helicoid.

Figure: Left: The genus one helicoid. Center and Right: Two views of the (possibly
existing) genus two helicoid. The arrow in the figure at the right points to the second
handle. Images courtesy of M. Schmies (left, center) and M. Traizet (right).

Key Properties:

M is conformally a certain rhombic torus T minus one point E . If we view T as
a rhombus with edges identified in the usual manner, then E corresponds to the
vertices of the rhombus.

The diagonals of T are mapped into perpendicular straight lines contained in
the surface, intersecting at a single point in space.



Genus-one helicoid.

Key Properties:

The unique end of M is asymptotic to a helicoid, so that one of the two lines
contained in the surface is an axis (like in the genuine helicoid).

The Gauss map g is a meromorphic function on T − {E} with an essential
singularity at E , and both dg/g and dh extend meromorphically to T .

Discovered in 1993 by Hoffman, Karcher and Wei.

Proved embedded in 2007 by Hoffman, Weber and Wolf.



Singly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: M = (C ∪ {∞})− {±e±iθ/2}, g(z) = z ,
dh = iz dz∏

(z±e±iθ/2)
, for fixed θ ∈ (0, π/2].

Discovered by Scherk in 1835, these surfaces denoted by Sθ form a
1-parameter family of complete, embedded, genus zero minimal surfaces
in a quotient of R3 by a translation, and have four annular ends.

Viewed in R3, each surface Sθ is invariant under reflection in the (x1, x3)
and (x2, x3)-planes and in horizontal planes at integer heights, and can be
thought of geometrically as a desingularization of two vertical planes
forming an angle of θ.



Singly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

The special case Sθ=π/2 also contains pairs of orthogonal lines at planes
of half-integer heights, and has implicit equation sin z = sinh x sinh y .

Together with the plane and catenoid, the surfaces Sθ are conjectured to
be the only connected, complete, immersed, minimal surfaces in R3 whose
area in balls of radius R is less than 2πR2. This conjecture was proved by
Meeks and Wolf under the additional hypothesis of infinite symmetry.

.



Doubly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: M = (C ∪ {∞})− {±e±iθ/2}, g(z) = z ,
dh = z dz∏

(z±e±iθ/2)
, where θ ∈ (0, π/2] (the case θ = π

2
.

It has implicit equation ez cos y = cos x .

Discovered by Scherk in 1835, are the conjugate surfaces to the
singly-periodic Scherk surfaces.

.



Doubly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

These surfaces are doubly-periodic with genus zero in their corresponding
quotient T 2 × R of R3, and were characterized by Lazard-Holly and
Meeks as being the unique properly embedded minimal surfaces with
genus zero in any T 2 × R.

.



Schwarz Primitive triply-periodic surface. Image by Weber

Key Properties:

Weierstrass Data: M = {(z , w) ∈ (C ∪ {∞})2 | w 2 = z8 − 14z4 + 1},
g(z , w) = z , dh = z dz

w
.

Discovered by Schwarz in the 1880’s, it is also called the P-surface.

This surface has a rank three symmetry group and is invariant by
translations in Z3.

Such a structure, common to any triply-periodic minimal surface
(TPMS), is also known as a crystallographic cell or space tiling.
Embedded TPMS divide R3 into two connected components (called
labyrinths in crystallography), sharing M as boundary (or interface) and
interweaving each other.



Schwarz Primitive triply-periodic surface. Image by Weber

Key Properties:

This property makes TPMS objects of interest to neighboring sciences as
material sciences, crystallography, biology and others. For example, the
interface between single calcite crystals and amorphous organic matter in
the skeletal element in sea urchins is approximately described by the
Schwarz Primitive surface.

The piece of a TPMS that lies inside a crystallographic cell of the tiling
is called a fundamental domain.



Schwarz Diamond surfaces. Image by M. Weber

Discovered by Schwarz, it is the conjugate surface to the
P-surface, and is another famous example of an embedded
TPMS.



Schoen’s triply-periodic Gyroid surface. Image by Weber

In the 1960’s, Schoen made a surprising discovery: another
minimal surface locally isometric to the Primitive and
Diamond surface is an embedded TPMS, and named this
surface the Gyroid.



1860 Riemann’s discovery! Image by Matthias Weber

Figure:



Riemann minimal examples. Image by Matthias Weber

Key Properties:

Discovered in 1860 by Riemann, these examples are invariant under
reflection in the (x1, x3)-plane and by a translation Tλ, and in the
quotient space R3/Tλ have genus one and two planar ends.

After appropriate scalings, they converge to catenoids as t → 0 or
to helicoids as t →∞.

The Riemann minimal examples have the amazing property that
every horizontal plane intersects the surface in a circle or in a line.

Meeks, Pérez and Ros proved these surfaces are the only properly
embedded minimal surfaces in R3 of genus 0 and infinite topology.



KMR doubly-periodic tori.

Figure: Two examples of doubly-periodic KMR surfaces. Images taken
from the 3D-XplorMath Surface Gallery

Key Properties:

The conjugate surface of any KMR surface also lies in this family.

The first KMR surfaces were found by Karcher in 1988. At the same
time Meeks and Rosenberg found examples of the same type as
Karcher’s.

In 2005, Pérez, Rodŕıguez and Traizet gave a general construction that
produces all possible complete, embedded minimal tori with parallel ends
in any T 2 × R, and proved that this moduli space reduces to the
three-dimensional family of KMR surfaces.



Callahan-Hoffman-Meeks surfaces. Image by M. Weber

Key Properties:

In 1989, Callahan, Hoffman and Meeks generalized the Riemann
minimal examples by constructing for any integer k ≥ 1 a singly-periodic,
properly embedded minimal surface Mk ⊂ R3 with infinite genus and an
infinite number of horizontal planar ends at integer heights and are
invariant under the orientation preserving translation by vector
T = (0, 0, 2), such that Mk/T has genus 2k + 1 and two ends.

Every horizontal plane at a non-integer height intersects Mk in a simple
closed curve.

Every horizontal plane at an integer height intersects Mk in k + 1 straight
lines that meet at equal angles along the x3-axis.



Introduction and history of the problem

Problem: Classify all PEMS in R3 with genus zero.
k = #{ends}

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid
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López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and k > 1 ⇒ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal sur-
faces = minimal laminations.



Introduction and history of the problem

Problem: Classify all PEMS in R3 with genus zero.
k = #{ends}

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and k > 1 ⇒ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal sur-
faces = minimal laminations.

Meeks-Rosenberg, 2005: k = 1 ⇒ plane, helicoid.



Introduction and history of the problem

Problem: Classify all PEMS in R3 with genus zero.
k = #{ends}

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and k > 1 ⇒ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal sur-
faces = minimal laminations.

Meeks-Rosenberg, 2005: k = 1 ⇒ plane, helicoid.

Theorem (Meeks, Pérez, Ros, 2007)

k = ∞ ⇒ Riemann minimal examples.



The family Rt of Riemann minimal examples



Cylindrical parametrization of a Riemann minimal example



1860 Riemann’s discovery! Image by Matthias Weber

Figure:



Cylindrical parametrization of a Riemann minimal example



Conformal compactification of a Riemann minimal example



The moduli space of genus-zero examples



Riemann minimal examples near helicoid limits



Classification of infinite topology g = 0 examples

Theorem (Meeks, Perez and Ros)

A PEMS in R3 with genus zero and
infinite topology is a Riemann minimal
example.

We now outline the main steps of the proof of this
theorem.

Throughout this outline,

M ⊂ R3 denotes a PEMS with genus zero and
infinite topology.



Step 1: Control the topology of M

Theorem (Frohman-Meeks, C-K-M-R)

Let ∆ ⊂ R3 be a PEMS with an infinite set of ends E .
After a rotation of ∆,

E has a natural linear ordering by relative heights of the
ends over the xy-plane;

∆ has one or two limit ends, each of which must be a top
or bottom end in the ordering.

Theorem (Meeks, Perez, Ros)

The surface M has two limit ends.

Idea of the proof M has 2 limit ends. One studies the
possible singular minimal lamination limits of homothetic
shrinkings of M to obtain a contradiction if M has only one
limit end.



A proper g = 0 surface with uncountable # of ends



Step 2: Understand the geometry of M

M can be parametrized conformally as
f : (S1×R)− E → R3 with f3(θ, t) = t so that:

The middle ends E = {(θn, tn)}n∈Z are planar.

M has bounded curvature, uniform local
area estimates and is quasiperiodic.

For each t, consider the plane curve
γt(θ) = f(θ, t) with speed λ = λt(θ) = |γ′t(θ)|
and geodesic curvature κ = κt(θ). Then the

Shiffman function SM = λ∂κ
∂θ extends to a

bounded analytic function on S1 × R.

SM is a Jacobi function when considered to be
defined on M. (∆− 2KM)SM = 0.



Step 3: Prove the Shiffman function SM is integrable

SM is integrable in the following sense. There
exists a family Mt of examples with M0 = M such
that the normal variational vector field to each
Mt corresponds to SMt

.
The proof of integrability of SM depends on:

(∆− 2KM) has finite dimensional bounded
kernel;

SM viewed as an infinitesimal variation of
Weierstrass data defined on C, can be
formulated by the KdV evolution equation.

KdV theory completes proof of integrability.



The Korteweg-de Vries equation (KdV)

ġ
S

= i
2

(
g ′′′ − 3g ′g ′′

g + 3
2

(g ′)3

g2

)
∈ TgW (Shiffman)

Question: Can we integrate ġ
S
? (This solves the problem)

(mKdV) Miura transf (KdV)

ġ
S

x=g ′/g−→ ẋ = i
2(x ′′′ − 3

2x2x ′)
u=ax ′+bx2

−→ u̇ = −u′′′ − 6uu′

u = −3(g ′)2

4g2 + g ′′

2g

KdV hierarchy (infinitesimal deformations of u)
∂u
∂t0

= −u′

∂u
∂t1

= −u′′′ − 6uu′

∂u
∂t2

= −u(5) − 10uu′′′ − 20u′u′′ − 30u2u′

...


All flows commute:
∂

∂tn
∂u
∂tm

= ∂
∂tm

∂u
∂tn

u algebro-geometric
def⇔ ∃n, ∂u

∂tn
∈ Span{ ∂u

∂t0
, . . . , ∂u

∂tn−1
}



Step 4: Show SM = 0

The property that SM = 0 is equivalent to the
property that M is foliated by circles and lines in
horizontal planes.

Theorem (Riemann 1860)

If M is foliated by circles and lines in horizontal
planes, then M is a Riemann minimal example.

Holomorphic integrability of SM, together with
the compactness of the moduli space of embedded
examples, forces SM to be linear, which requires
the analytic data defining M to be periodic. In
1997, we proved that SM = 0 for periodic examples.
Hence, M is a Riemann minimal example.



A Riemann minimal example Image by Matthias Weber

Figure:



1860 Riemann’s discovery! Image by Matthias Weber

Figure:


