
Review guide for midterm 2 in Math
233

Midterm 2 covers material that begins approximately with the definition of
partial derivatives in Chapter 14.3 and ends approximately with methods for
calculating the double integral of a function f(x, y) over a domain D described
in the xy-plane. See the updated course web page for the exact material
covered on this exam.

Definition 1 (Partial Derivatives) If f is a function of two variables, its
partial derivatives are the functions fx and fy defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

We have the following rule for calculating partial derivatives.

1. To find fx, regard y as a constant and differentiate f(x, y) with respect
to x.

2. To find fy, regard x as a constant and differentiate f(x, y) with respect
to y.

Example 2 Calculate fx, fy for f(x, y) = x2exy + y2.

Solution : We apply the sum, product and chain rules for derivatives, to get:

fx(x, y) = 2xexy + x2exyy = 2xexy + x2yexy

fy(x, y) = x2exyx+ 2y = x3exy + 2y.

Definition 3 (Second Partial Derivatives) For z = f(x, y), we use the
following notation:

(fx)x = fxx =
∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
=
∂2z

∂x2

(fx)y = fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=

∂2z

∂y∂x

(fy)x = fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
=

∂2z

∂x∂y

(fy)y = fyy =
∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2
=
∂2z

∂y2

Example 4 Find the second partial derivatives of

f(x, y) = x3 + x2y3 − 2y2.
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Solution : Note:

fx(x, y) = 3x2 + 2xy3 fy(x, y) = 3x2y2 − 4y.

Therefore,
fxx = 6x+ 2y3 fxy = 6xy2

fyx = 6xy2 fyy = 6x2y − 4.

Note that in the above example fxy = fyx. This is no coincidence and follows
from the next theorem that states that under weak conditions on f(x, y), taking
partial derivatives is a commutative process.

Theorem 5 (Clairaut’s Theorem) Suppose f is defined on a disk D that
contains the point (a, b). If the functions fxy and fyx are both continuous on
D, then

fxy(a, b) = fyx(a, b).

The next definition of tangent plane generalizes in a natural way the fol-
lowing equation of the tangent line of a function of 1 variable:

y − y0 = f ′(x0)(x− x0).

Definition 6 (Tangent Plane) Suppose f has continuous partial derivatives.
An equation of the tangent plane to the surface z = f(x, y) at the point
P = (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Example 7 Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 at
the point (1, 1, 3).

Solution : Let f(x, y) = 2x2 + y2. Then

fx(x, y) = 4x fy(x, y) = 2y

fx(1, 1) = 4 fy(1, 1) = 2.

Then Definition 6 gives the equation of the tangent plane at (1, 1, 3) as

z − 3 = 4(x− 1) + 2(y − 1)

or
z = 4x+ 2y − 3.

The next definition of linear approximation generalizes the linear approxi-
mation L(x) of a function f(x) of 1 variable at a point x0 = a :

L(x) = f(x) + f ′(x)(x− a).



3

Definition 8 (Linear Approximation) The linear approximation of f(x, y)
at (a, b) is

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Example 9 Use the linear approximation L(x, y) to f(x, y) = xexy at (1, 2)
to estimate f(1.1, 1.8).

Solution :
f1, 2) = e2

fx(x, y) = exy + xyexy fy(x, y) = x2exy

fx(1, 2) = e2 + 2e2 fy(1, 2) = e2.

L(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2).

Hence,
L(1.1, 1.8) = e2 + (e2 + 2e2)(.1) + e2(−.2).

Definition 10 If z = f(x, y), then f is differentiable at (a, b) if the change
∆z of z can be expressed in the form

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y,

where ε1 and ε2 → 0 as (∆x,∆y)→ (0, 0).

The next theorem gives a simple condition for f(x, y) to satisfy in order to
be differentiable.

Theorem 11 If the partial derivatives fx and fy exist near (a, b) and are
continuous at (a, b), then f is differentiable at (a, b).

Definition 12 (Total Differential) For z = f(x, y),

dz = fx(x, y) dx+ fy(x, y) dy =
∂z

∂x
dx+

∂z

∂y
dy.

Example 13 The base radius and height of a right circular cone are measured
as 10 cm and 25 cm, respectively, with a possible error in measurement of as
much as 0.1 cm. in each. Use differentials to estimate the maximum error in
the calculated volume of the cone.

Solution : The volume V of a cone with base radius r and height h is V =
πr2 h

3
. So the differential of V is

dV =
∂V

∂r
dr +

∂V

∂h
dh =

2πrh

3
dr +

πr2

3
dh.

Since each error is at most 0.1 cm, we have |∆r| ≤ 0.1, |∆h| ≤ 0.1. To find
the largest error in the volume we use the largest error in the measurement
of r and of h. Therefore, we take dr = 0.1 and dh = 0.1 along with r = 10,
h = 25. This gives the estimate

dV =
500π

3
(0.1) +

100π

3
(0.1) =

60π

3
= 20π.

Thus, the maximum error in the calculated volume is about 20π cm3 ≈ 63 cm3.
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Example 14 The dimensions of a rectangular box are measured to be 75 cm,
60 cm, and 40 cm, and each measurement is correct to within 0.2 cm. Use
differentials to estimate the largest possible error when the volume of the box
is calculated from these measurements.

Solution : If the dimensions of the box are x, y, and z, its volume is V = xyz
and so

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz = yz dx+ xz dy + xy dz.

We are given that |∆x| ≤ 0.2, |∆y| ≤ 0.2, and |∆z| ≤ 0.2. To find the largest
error in the volume, we use dx = 0.2, dy = 0.2, and dz = 0.2 together with
x = 75, y = 60, and z = 40:

∆V ≈ dV = (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980.

Thus, an error of only 0.2 cm in measuring each dimension could lead to
an error of as much as 1980 cm3 in the calculated volume! This may seem like
a large error, but it’s only about 1% of the volume of the box.

Theorem 15 (Chain Rule Case 1) Suppose that z = f(x, y) is a differen-
tiable function of x and y, where x = g(t) and y = h(t) are both differentiable
functions of t. Then z is a differentiable function of t and

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Theorem 16 (Chain Rule Case 2) Suppose that z = f(x, y) is a differ-
entiable function of x and y, where x = g(s, t) and y = h(s, t) are both
differentiable functions of s and t. Then z is a differentiable function of t and

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
.

Theorem 17 (The Chain Rule (General Version)) Suppose that u is a
differentiable function of n variables x1, x2, . . . , xn and each xj is a differ-
entiable function of the m variables t1, t2, . . . , tm. Then u is a function of
t1, t2, . . . , tm and

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ . . .+
∂u

∂xn

∂xn
∂ti

for each i = 1, 2, . . . ,m.

Example 18 If z = x2y + 3xy4, where x = sin 2t and y = cos t, find dz
dt

when
t = 0.
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Solution : The Chain Rule gives

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= (2xy + 3y4)(2 cos 2t) + (x2 + 12xy3)(− sin t).

It’s not necessary to substitute the expressions for x and y in terms of t. We
simply observe that when t = 0 we have x = sin 0 = 0 and y = cos 0 = 1.
Therefore,

dz

dt t=0
= (0 + 3)(2 cos 0) + (0 + 0)(− sin 0) = 6.

Example 19 The pressure P (in kilopascals), volume V (in liters), and tem-
perature T (in kelvins) of a mole of an ideal gas are related by the equation
PV = 8.31T . Find the rate at which the pressure is changing when the tem-
perature is 300 K and increasing at a rate of 0.1 K/s and the volume is 100 L
and increasing at a rate of 0.2 L/s.

Solution : If t represents the time elapsed in seconds, then at the given
instant we have T = 300, dT/dt = 0.1, V = 100, dV/dt = 0.2. Since P =
8.31 T

V
, with ∂P

∂T
= 8.31

V
and ∂T

∂V
= −8.31T

V 2 , then Case 1 of the Chain Rule gives

dP

dt
=
∂P

∂T

dT

dt
− ∂P

∂V

dV

dt
=

8.31

V

dT

dt
− 8.31T

V 2

dV

dt

=
8.31

100
(0.1)− 8.31(300)

1002
(0.2) = −0.04155.

The pressure is decreasing at a rate of about 0.042 kPa/s.

Example 20 If z = ex sin y, where x = st2 and y = s2t, find ∂z
∂s

and ∂z
∂t
.

Solution : Applying Case 2 of the Chain Rule, we get

dz

ds
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
= (ex sin y)(t2) + (ex cos y)(2st)

= t2est
2

sin(s2t) + 2stest
2

cos(s2t),

dz

dt
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
= (ex sin y)(2st) + (ex cos y)(s2)

= 2srest
2

sin(s2t) + s2est
2

cos(s2t).

Example 21 If u = x4y+y2z3, where x = rset, y = rs2e−t, and z = r2s sin yt,
find the value of ∂u/∂s when r = 2, s = 1, t = 0.

Solution : We have

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s
+
∂u

∂z

∂z

∂s

= (4x3y)(ret) + (x4 + 2zy3)(2rse−t) + (3y2z2)(r2 sin t).

When r = 2, s = 1, and t = 0, we have x = 2, y = 2, and z = 0, so

∂u

∂s
= (64)(2) + (16)(4) + (0)(0) = 192.
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Theorem 22 (Implicit Differentiation) Suppose that z is given implicitly
as a function z = f(x, y) by an equation F (x, y, z) = 0, i.e., F (x, y, f(x, y)) = 0
for all (x, y) in the domain of f(x, y). Then:

∂z

∂x
= −

∂F
∂x
∂F
∂z

∂z

∂y
= −

∂F
∂y

∂F
∂z

.

Example 23 Find ∂z
∂x

and ∂z
∂y

if x3 + y3 + z3 + 6xyz = 1.

Solution : Let F (x, y, z) = x3 + y3 + z3 + 6xyz− 1. Then, from Theorem 22,
we have

∂z

∂x
= −Fx

Fz

= −3x2 + 6yz

3z2 + 6xy
= −x

2 + 2yz

z2 + 2xy

∂z

∂y
= −Fy

Fz

= −3y2 + 6xz

3z2 + 6xy
= −y

2 + 2xz

z2 + 2xy
.

Definition 24 (Directional Derivative) The directional derivative of f(x, y)
at (x0, y0) in the direction of a unit vector u = 〈a, b〉 is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

if this limit exists.

Definition 25 (Directional Derivative) The directional derivative of f(x, y, z)
at (x0, y0, z0) in the direction of a unit vector u = 〈a, b, c〉 is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)

h

if this limit exists.

Definition 26 (Gradient) If f is a function of two variables x and y, then
the gradient of f is the vector function ∇f defined by

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
∂f

∂x
i +

∂f

∂y
j.

Definition 27 (Gradient) For f(x, y, z), a function of three variables,

∇f = 〈fx, fy, fz〉 =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

The next two theorems give simple rules for calculating the directional
derivative of a function in 2 or 3 variables in terms of the gradient of the
function.

Theorem 28 If f is a differentiable function of x and y, then f has a direc-
tional derivative in the direction of any unit vector u = 〈a, b〉 and

Duf(x, y) = fx(x, y)a+ fy(x, y)b.
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Theorem 29 If f is a differentiable function of x, y, and z, then f has a
directional derivative in the direction of any unit vector u = 〈a, b, c〉 and

Duf(x, y, z) = ∇f(x, y, z) · u.

By the above two theorems, we have for any unit vector u,

Duf = ∇f · u = |∇f ||u| cos(θ) = |∇f | cos(θ).

Thus, the next theorem holds.

Theorem 30 Suppose f is a differentiable function of two or three variables.
The maximum value of the directional derivative Duf(x) is |∇f(x)| and it
occurs when u has the same direction as the gradient vector ∇f(x).

Example 31 Find the directional derivative of the function f(x, y) = x2y3 −
4y at the point (2,−1) in the direction of the vector v = 2i + 5j.

Solution : We first compute the gradient vector at (2,−1):

∇f(x, y) = 2xy3i + (3x2y2 − 4)j

∇f(2,−1) = −4i + 8j.

Note that v is not a unit vector, but since |v| =
√

29, the unit vector in the
direction of v is

u =
v

|v|
=

2√
29

i +
5√
29

j.

Therefore, by Theorem 28, we have

Duf(2,−1) = ∇f(2,−1) · u = (−4i + 8j) · ( 2√
29

i +
5√
29

j)

=
−4 · 2 + 8 · 5√

29
=

32√
29
.

Theorem 32 Suppose S is a surface determined as F (x, y, z) = k for k =
constant. Then ∇F is everywhere normal or orthogonal to S. In particular, if
P = (x0, y0, z0) ∈ S, then the equation of the tangent plane to S at p is:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 (1)

Example 33 Find the equations of the tangent plane and normal line at the
point (−2, 1,−3) to the ellipsoid

x2

4
+ y2 +

z2

9
= 3.
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Solution : The ellipsoid is the level surface (with k = 3) of the function

F (x, y, z) =
x2

4
+ y2 +

z2

9
.

Therefore, we have

Fx(x, y, z) =
x

2
Fy(x, y, z) = 2y Fz(x, y, z) =

2z

9

Fx(−2, 1,−3) = −1 Fy(−2, 1,−3) = 2 Fz(−2, 1,−3) = −2

3
.

Then Equation 1 in Theorem 32 gives the equation of the tangent plane at
(−2, 2,−3) as

−1(x+ 2) + 2(y − 1)− 2

3
(z + 3) = 0,

which simplifies to 3x− 6y + 2z = 18 = 0.
Since ∇F (−2, 1,−3) = 〈−1, 2,−2

3
〉, the vector equation of the normal line

is:

L(t) = 〈−2, 1,−3〉+ t〈−1, 2,−2

3
〉.

Definition 34 A function of two variables has a local maximum at (a, b) if
f(x, y) ≤ f(a, b) when (x, y) is near (a, b). (This means that f(x, y) ≤ f(a, b)
for all points (x, y) in some disk with center (a, b).) The number f(a, b) is called
a local maximum value. If f(x, y) ≤ f(a, b) for all f(x, y) in the domain of
f , then f has an absolute maximum at (a, b). If f(x, y) ≥ f(a, b) when (x, y)
is near (a, b), then f(a, b) is a local minimum value. If f(x, y) ≥ f(a, b) for
all (x, y) in the domain of f , then f has an absolute minimum at (a, b).

The next theorem explains how to find local maxima and local minima for
a function in two variables.

Theorem 35 If f has a local maximum of minimum at (a, b) and the first-
order partial derivatives of f exist there, then fx(a, b) = 0 and fy(a, b) = 0.

Definition 36 A point (a, b) is called a critical point of f(x, y) if fx(a, b) =
fy(a, b) = 0.

The next theorem gives a method for testing critical points of a function
f(x, y) to see if they represent local minima, local maxima or saddle points
(a critical point (a, b) is a saddle point if the Hessian D defined in the next
theorem is negative).

Theorem 37 (Second Derivative Test) Suppose the second partial deriva-
tives of f are continuous on a disk with center (a, b), and suppose that fx(a, b) =
0 and fy(a, b) = 0 (that is, (a, b) is a critical point of f). Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a,b)]
2.
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(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is a saddle point.

To remember the formula for D it’s helpful to write it as a determinant:

D =

∣∣∣∣ fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy − (fxy)
2.

Example 38 Find the local maximum and minimum values and saddle points
of f(x, y) = x4 + y4 − 4xy + 1.

Solution : We first locate the critical points:

fx = 4x3 − 4y fy = 4y3 − 4x.

Setting these partial derivatives equal to 0, we obtain the equations

x3 − y = 0 y3 − x = 0.

To solve these equations we substitute y = x3 from the first equation into the
second one. This gives

0 = x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1),

so there are three real roots: x = 0, 1,−1. The three critical points are (0, 0),
(1, 1), and (−1,−1).

Next we calculate the second partial derivatives and D(x, y):

fxx = 12x2 fxy = −4 fyy = 12y2

D(x, y) = fxxfyy − (fxy)
2 = 144x2y2 − 16.

Since D(0, 0) = −16 < 0, it follows from case (c) of the Second Derivative
Test that the origin is a saddle point; hence, f has no local maximum or
minimum at (0, 0). Since D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0, we see
from case (a) of the test that f(1, 1) = −1 is a local minimum. Similarly, we
have D(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0, so f(−1,−1) = −1 is
also a local minimum value.

Definition 39 A subset D ⊂ R2 is closed if it contains all of its boundary
points.

Definition 40 A subset D ⊂ R2 is bounded if it is contained within some
disk in the plane.

Theorem 41 (Extreme Value Theorem for Functions of Two Variables)
If f is continuous on a closed, bounded set D in R2, then f attains an absolute
maximum value f(x1, y1) and an absolute minimum value f(x2, y2) at some
points (x1, y1) and (x2, y2) in D.
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To find the absolute maximum and minimum values of a continuous func-
tion f on a closed, bounded set D:

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

The next theorem is stated for a function f of three variables but there is
a similar theorem for a function of two variables (see Example 43 below).

Theorem 42 (Method of Lagrange Multipliers) To find the maximum
and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k (as-
suming that these extreme values exist and ∇g 6= 0 on the surface g(x, y, z) =
k):

1. Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and
g(x, y, z) = k.

2. Evaluate f at all the points (x, y, z) that result from step 1. The largest
of these values is the maximum value of f ; the smallest is the minimum
value of f .

Example 43 Find the extreme values of the function f(x, y) = x2 + 2y2 on
the circle x2 + y2 = 1.

Solution : We are asked for the extreme values of f subject to the constraint
g(x, y) = x2 + y2 = 1. Using Lagrange multipliers, we solve the equations
∇f = λ∇g, g(x, y) = 1, which can be written as

fx = λgx fy = λgy g(x, y) = 1

or as
2x = 2xλ (2)

4y = 2yλ (3)

x2 + y2 = 1. (4)

From (2) we have x = 0 or λ = 1. If x = 0, then (4) gives y = ±1. If λ = 1,
then y = 0 from (3), so then (4) gives x = ±1. Therefore, f has possible
extreme values at the points (0, 1), (0,−1) (1, 0), and (−1, 0). Evaluating f
at these four points, we find that

f(0, 1) = 2 f(0,−1) = 2 f(1, 0) = 1 f(−1, 0) = 1.

Therefore, the maximum value of f on the circle x2+y2 = 1 is f(0,±1) = 2
and the minimum value is f(±1, 0) = 1.
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Example 44 Find the extreme values of f(x, y) = x2 + 2y2 on the disk x2 +
y2 ≤ 1.

Solution : We will compare the values of f at the critical points with values
at the points on the boundary. Since fx = 2x and fy = 4y, the only critical
point is (0, 0). We compare the value of f at that point with the extreme
values on the boundary from Example 43:

f(0, 0) = 0 f(±1, 0) = 1 f(0,±1) = 2.

Therefore, the maximum value of f on the disk x2 + y2 ≤ 1 is f(0,±1) = 2
and the minimum value is f(0, 0) = 0.

We now start the second material for midterm 2 which concerns double
integrals. For a positive, continuous function f(x, y) defined on a closed and
bounded domain D ⊂ R2, we denote by∫ ∫

D

f(x, y) dA,

the volume under the graph of f(x, y) over D. This volume for a rectangle
R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} = [a, b] × [b, c] ⊂ R2 can be estimated
by the following Midpoint Rule for Double Integrals described in the next
theorem. We also use this rule for defining the double integral when f(x, y) is
not necessarily positive.

Theorem 45 (Midpoint Rule for Double Integrals) Let m, n be posi-
tive integers. Let x0 = a < x1 < x2 < . . . < xm = b be a division of
[a, b] into n intervals [xi, xi + 1] of equal width ∆x = b−a

m
. Similarly, let

y0 = c < y1 < y2 < . . . < yn = d be a division of [c, d] into m intervals [yj, yj+1]
of equal widths ∆y = d−c

n
. Then:∫ ∫

R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(xi, yj) ∆A,

where xi is the midpoint of [xi−1, xi] and yj is the midpoint of [yj−1, yj].
Furthermore, the right-hand side above converges to the left-hand side as
m,n→∞

Definition 46 If f is a continuous function of two variables, then its average
value on a domain D ⊂ R2 is: ∫ ∫

D
f(x, y) dA

Area(D) =
∫ ∫

D
dA

.

Definition 47 The iterated integral of f(x, y) on a rectangle R = [a, b]× [c, d]
is ∫ b

a

∫ d

c

f(x, y) dy dx or

∫ d

c

∫ b

a

f(x, y) dx dy.

One calculates the integral
∫ b

a

∫ d

c
f(x, y) dy dx by first calculating A(x) =∫ d

c
f(x, y) dy, holding x constant, and then calculating

∫ b

a
A(x) dx and similarly,

for calculating the other integral.
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Example 48 Evaluate the iterated integral.∫ 3

0

∫ 2

1

x2y dy dx

Solution : Regarding x as a constant, we obtain∫ 2

1

x2y dy =

[
x2
y2

2

]y=2

y=1

= x2
(

22

2

)
− x2

(
12

2

)
=

3

2
x2.

Thus, the function A in the preceding discussion is given by A(x) = 3
2
x2 in

this example. We now integrate this function of x from 0 to 3:∫ 3

0

∫ 2

1

x2y dy dx =

∫ 3

0

[∫ 2

1

x2y dy

]
dx =

∫ 3

0

3

2
x2 dx =

x3

2

]3
0

=
27

2
.

Example 49 Evaluate the iterated integral.∫ 2

1

∫ 3

0

x2y dx dy.

Solution : Here we first integrate with respect to x:∫ 2

1

∫ 3

0

x2y dx dy =

∫ 2

1

[∫ 3

0

x2y dx

]
dy =

∫ 2

1

[
x3

3
y

]x=3

x=0

dy =

∫ 2

1

9y dy = 9
y2

2

]2
1

=
27

2
.

Theorem 50 (Fubini’s Theorem) If f is continuous on the rectangle R =
{(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}, then∫ ∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

More generally, this is true if we assume that f is bounded on R, f is discon-
tinuous only on a finite number of smooth curves, and the iterated integrals
exist.

Example 51 Evaluate the double integral
∫ ∫

R
(x − 3y2) dA, where R =

{(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Solution : Fubini’s Theorem gives∫ ∫
R

(x− 3y2) dA =

∫ 2

0

∫ 2

1

(x− 3y2) dy dx =

∫ 2

0

[
xy − y3

]y=2

y=1
dx

=

∫ 2

0

(x− 7) dx =
x2

2
− 7x

]2
0

= −12.

Example 52 Find the volume of the solid S that is bounded by the elliptic
paraboloid x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the three
coordinate planes.
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Solution : We first observe that S is the solid that lies under the surface
z = 16 − x2 − y2 and above the square R = [0, 2] × [0, 2]. We are now in a
position to evaluate the double integral using Fubini’s Theorem. Therefore,

V =

∫ ∫
R

(16− x2 − 2y2) dA =

∫ 2

0

∫ 2

0

(16− x2 − 2y2) dx dy

=

∫ 2

0

[16x− 1

3
x3 − 2y2x]x=2

x=0 dy

=

∫ 2

0

(
88

3
y − 4y2) dy =

[
88

3
− 4

3
y3
]2
0

= 48.

In general, for any continuous function f(x, y) on a closed and bounded
domain D ⊂ R2, the integral

∫
D

∫
f(x, y) dA is defined and it is equal to the

area under the graph of f(x, y) on D when the function is positive. There are
two cases for D, called type I and type II, where the integral∫ ∫

D

f(x, y) dA

can be calculated in a straightforward manner.

Definition 53 A plane region D is said to be of type I, if it can be expressed
as

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

where g1(x) and g2(x) are continuous.

Definition 54 A plane region D is said to be of type II, if it can be expressed
as

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)},

where h1 and h2 are continuous.

Theorem 55 If f is continuous on a type I region D such that

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

then ∫ ∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

Theorem 56 ∫ ∫
D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy.

where D is a type II region given by Definition 54.

Example 57 Evaluate
∫ ∫

D
(x + 2y) dA, where D is the region bounded by

the parabolas y = 2x2 and y = 1 + x2.
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Solution : The parabolas intersect when 2x2 = 1 + x2, that is x2 = 1, so
x = ±1. We note that the region D, is a type I region but not a type II region
and we can write

D = {(x, y)− 1 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2}.

Since the lower boundary is y = 2x2 and the upper boundary is y = 1 + x2,
Definition 53 gives∫ ∫

D

(x+ 2y) dA =

∫ 1

−1

∫ 1+x2

2x2

(x+ 2y) dy dx =

∫ 1

−1

[
xy + y2

]y=1+x2

y=2x2 dx

=

∫ 1

−1
(−3x4 − x3 + 2x2 + x+ 1) dx

= −3
x5

5
− x4

4
+ 2

x3

3
+
x2

2
+ x

∣∣∣∣1
−1

=
32

15
.

Example 58 Find the volume of the solid that lies under the paraboloid z =
x2 + y2 and above the region D in the xy-plane bounded by the line y = 2x
and the parabola y = x2.

Solution 1: We see that D is a type I region and

D = {(x, y) | 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x}.

Therefore, the volume under z = x2 + y2 and above D is

V =

∫ ∫
D

(x2 + y2) dA =

∫ 2

0

∫ 2x

x2

(x2 + y2) dy dx

=

∫ 2

0

[
x2y +

y3

3

]y=2x

y=x2

dx =

∫ 2

0

[
x2(2x) +

(2x)3

3
− x2x2 − (x2)3

3

]
dx

=

∫ 2

0

(
−x

6

3
− x4 +

14x3

3

)
dx = −x

7

21
− x5

5
+

7x4

6

]2
0

=
216

35
.

Solution 2: We see that D can also be written as a type II region:

D = {(x, y) | 0 ≤ y ≤ 4,
1

2
y ≤ x ≤ √y}.

Therefore, another expression for V is

V =

∫ ∫
D

(x2 + y2) dA =

∫ 4

0

∫ √y
1
2
y

(x2 + y2) dx dy

=

∫ 4

0

[
x3

3
+ y2x

]x=√y
x= 1

2
y

dy =

∫ 4

0

(
y

3
2

3
+ y

5
2 − y3

24
− y3

2

)
dy

=
2

15
y

5
2 +

2

7
y

7
2 − 13

96
y4
]4
0

=
216

35
.
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Example 59 Evaluate the iterated integral
∫ 1

0

∫ 1

x
sin(y2) dy dx.

Solution : If we try to evaluate the integral as it stands, we are faced with
the task of first evaluating

∫
sin(y2) dy. But it’s impossible to do so in finite

terms since
∫

sin(y2) dy is not an elementary function. So we must change the
order of integration. This is accomplished by first expressing the given iterated
integral as a double integral. We have∫ 1

0

∫ 1

x

sin(y2) dy dx =

∫ ∫
D

sin(y2) dA,

where
D = {(x, 0 | 0 ≤ x ≤ 1, x ≤ y ≤ 1)}.

We see that an alternative description of D is

D = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

This enables us to express the double integral as an iterated integral in the
reverse order:∫ 1

0

∫ 1

x

sin(y2) dy dx =

∫ ∫
D

sin(y2) dA =

∫ 1

0

∫ y

0

sin(y2) dx dy =

∫ 1

0

[
x sin(y2)

]x=y

x=0
dy

=

∫ 1

0

y sin(y2) dy = −1

2
cos(y2)

]1
0

=
1

2
(1− cos 1).


