Review guide for midterm 2 in Math 233

Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 14.3 and ends approximately with methods for calculating the double integral of a function $f(x, y)$ over a domain D described in the $x y$-plane. See the updated course web page for the exact material covered on this exam.

Definition 1 (Partial Derivatives) If f is a function of two variables, its partial derivatives are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} .
\end{aligned}
$$

We have the following rule for calculating partial derivatives.

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Example 2 Calculate f_{x}, f_{y} for $f(x, y)=x^{2} e^{x y}+y^{2}$.
Solution : We apply the sum, product and chain rules for derivatives, to get:

$$
\begin{gathered}
f_{x}(x, y)=2 x e^{x y}+x^{2} e^{x y} y=2 x e^{x y}+x^{2} y e^{x y} \\
f_{y}(x, y)=x^{2} e^{x y} x+2 y=x^{3} e^{x y}+2 y
\end{gathered}
$$

Definition 3 (Second Partial Derivatives) For $z=f(x, y)$, we use the following notation:

$$
\begin{gathered}
\left(f_{x}\right)_{x}=f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
\left(f_{x}\right)_{y}=f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
\left(f_{y}\right)_{x}=f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
\left(f_{y}\right)_{y}=f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{gathered}
$$

Example 4 Find the second partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2} .
$$

Solution : Note:

$$
f_{x}(x, y)=3 x^{2}+2 x y^{3} \quad f_{y}(x, y)=3 x^{2} y^{2}-4 y
$$

Therefore,

$$
\begin{array}{lr}
f_{x x}=6 x+2 y^{3} & f_{x y}=6 x y^{2} \\
f_{y x}=6 x y^{2} & f_{y y}=6 x^{2} y-4 .
\end{array}
$$

Note that in the above example $f_{x y}=f_{y x}$. This is no coincidence and follows from the next theorem that states that under weak conditions on $f(x, y)$, taking partial derivatives is a commutative process.

Theorem 5 (Clairaut's Theorem) Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

The next definition of tangent plane generalizes in a natural way the following equation of the tangent line of a function of 1 variable:

$$
y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Definition 6 (Tangent Plane) Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Example 7 Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.

Solution: Let $f(x, y)=2 x^{2}+y^{2}$. Then

$$
\begin{aligned}
f_{x}(x, y)=4 x & f_{y}(x, y)=2 y \\
f_{x}(1,1)=4 & f_{y}(1,1)=2
\end{aligned}
$$

Then Definition 6 gives the equation of the tangent plane at $(1,1,3)$ as

$$
z-3=4(x-1)+2(y-1)
$$

or

$$
z=4 x+2 y-3
$$

The next definition of linear approximation generalizes the linear approximation $L(x)$ of a function $f(x)$ of 1 variable at a point $x_{0}=a$:

$$
L(x)=f(x)+f^{\prime}(x)(x-a) .
$$

Definition 8 (Linear Approximation) The linear approximation of $f(x, y)$ at (a, b) is

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

Example 9 Use the linear approximation $L(x, y)$ to $f(x, y)=x e^{x y}$ at $(1,2)$ to estimate $f(1.1,1.8)$.

Solution :

$$
\begin{gathered}
f 1,2)=e^{2} \\
f_{x}(x, y)=e^{x y}+x y e^{x y} \quad f_{y}(x, y)=x^{2} e^{x y} \\
f_{x}(1,2)=e^{2}+2 e^{2} \quad f_{y}(1,2)=e^{2} . \\
L(x, y)=f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) .
\end{gathered}
$$

Hence,

$$
L(1.1,1.8)=e^{2}+\left(e^{2}+2 e^{2}\right)(.1)+e^{2}(-.2)
$$

Definition 10 If $z=f(x, y)$, then f is differentiable at (a, b) if the change Δz of z can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.
The next theorem gives a simple condition for $f(x, y)$ to satisfy in order to be differentiable.

Theorem 11 If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Definition 12 (Total Differential) For $z=f(x, y)$,

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Example 13 The base radius and height of a right circular cone are measured as 10 cm and 25 cm , respectively, with a possible error in measurement of as much as 0.1 cm . in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

Solution : The volume V of a cone with base radius r and height h is $V=$ $\pi r^{2} \frac{h}{3}$. So the differential of V is

$$
d V=\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h=\frac{2 \pi r h}{3} d r+\frac{\pi r^{2}}{3} d h .
$$

Since each error is at most 0.1 cm , we have $|\Delta r| \leq 0.1,|\Delta h| \leq 0.1$. To find the largest error in the volume we use the largest error in the measurement of r and of h. Therefore, we take $d r=0.1$ and $d h=0.1$ along with $r=10$, $h=25$. This gives the estimate

$$
d V=\frac{500 \pi}{3}(0.1)+\frac{100 \pi}{3}(0.1)=\frac{60 \pi}{3}=20 \pi .
$$

Thus, the maximum error in the calculated volume is about $20 \pi \mathrm{~cm}^{3} \approx 63 \mathrm{~cm}^{3}$.

Example 14 The dimensions of a rectangular box are measured to be 75 cm , 60 cm , and 40 cm , and each measurement is correct to within 0.2 cm . Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements.

Solution: If the dimensions of the box are x, y, and z, its volume is $V=x y z$ and so

$$
d V=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z=y z d x+x z d y+x y d z
$$

We are given that $|\Delta x| \leq 0.2,|\Delta y| \leq 0.2$, and $|\Delta z| \leq 0.2$. To find the largest error in the volume, we use $d x=0.2, d y=0.2$, and $d z=0.2$ together with $x=75, y=60$, and $z=40$:

$$
\Delta V \approx d V=(60)(40)(0.2)+(75)(40)(0.2)+(75)(60)(0.2)=1980
$$

Thus, an error of only 0.2 cm in measuring each dimension could lead to an error of as much as $1980 \mathrm{~cm}^{3}$ in the calculated volume! This may seem like a large error, but it's only about 1% of the volume of the box.

Theorem 15 (Chain Rule Case 1) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} .
$$

Theorem 16 (Chain Rule Case 2) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are both differentiable functions of s and t. Then z is a differentiable function of t and

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} .
$$

Theorem 17 (The Chain Rule (General Version)) Suppose that u is a differentiable function of n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$. Then u is a function of $t_{1}, t_{2}, \ldots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\ldots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $i=1,2, \ldots, m$.
Example 18 If $z=x^{2} y+3 x y^{4}$, where $x=\sin 2 t$ and $y=\cos t$, find $\frac{d z}{d t}$ when $t=0$.

Solution: The Chain Rule gives

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+3 y^{4}\right)(2 \cos 2 t)+\left(x^{2}+12 x y^{3}\right)(-\sin t) .
$$

It's not necessary to substitute the expressions for x and y in terms of t. We simply observe that when $t=0$ we have $x=\sin 0=0$ and $y=\cos 0=1$. Therefore,

$$
\left.\frac{d z}{d t}\right|_{t=0}=(0+3)(2 \cos 0)+(0+0)(-\sin 0)=6 .
$$

Example 19 The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation $P V=8.31 T$. Find the rate at which the pressure is changing when the temperature is 300 K and increasing at a rate of $0.1 \mathrm{~K} / \mathrm{s}$ and the volume is 100 L and increasing at a rate of $0.2 \mathrm{~L} / \mathrm{s}$.

Solution: If t represents the time elapsed in seconds, then at the given instant we have $T=300, d T / d t=0.1, V=100, d V / d t=0.2$. Since $P=$ $8.31 \frac{T}{V}$, with $\frac{\partial P}{\partial T}=\frac{8.31}{V}$ and $\frac{\partial T}{\partial V}=-\frac{8.31 T}{V^{2}}$, then Case 1 of the Chain Rule gives

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{\partial P}{\partial T} \frac{d T}{d t}-\frac{\partial P}{\partial V} \frac{d V}{d t}=\frac{8.31}{V} \frac{d T}{d t}-\frac{8.31 T}{V^{2}} \frac{d V}{d t} \\
& =\frac{8.31}{100}(0.1)-\frac{8.31(300)}{100^{2}}(0.2)=-0.04155
\end{aligned}
$$

The pressure is decreasing at a rate of about $0.042 \mathrm{kPa} / \mathrm{s}$.
Example 20 If $z=e^{x} \sin y$, where $x=s t^{2}$ and $y=s^{2} t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
Solution: Applying Case 2 of the Chain Rule, we get

$$
\begin{gathered}
\frac{d z}{d s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=\left(e^{x} \sin y\right)\left(t^{2}\right)+\left(e^{x} \cos y\right)(2 s t) \\
=t^{2} e^{s t^{2}} \sin \left(s^{2} t\right)+2 s t e^{s t^{2}} \cos \left(s^{2} t\right) \\
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\left(e^{x} \sin y\right)(2 s t)+\left(e^{x} \cos y\right)\left(s^{2}\right) \\
=2 s r e^{s t^{2}} \sin \left(s^{2} t\right)+s^{2} e^{s t^{2}} \cos \left(s^{2} t\right)
\end{gathered}
$$

Example 21 If $u=x^{4} y+y^{2} z^{3}$, where $x=r s e^{t}, y=r s^{2} e^{-t}$, and $z=r^{2} s \sin y t$, find the value of $\partial u / \partial s$ when $r=2, s=1, t=0$.

Solution: We have

$$
\begin{gathered}
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s} \\
=\left(4 x^{3} y\right)\left(r e^{t}\right)+\left(x^{4}+2 z y^{3}\right)\left(2 r s e^{-t}\right)+\left(3 y^{2} z^{2}\right)\left(r^{2} \sin t\right) .
\end{gathered}
$$

When $r=2, s=1$, and $t=0$, we have $x=2, y=2$, and $z=0$, so

$$
\frac{\partial u}{\partial s}=(64)(2)+(16)(4)+(0)(0)=192 .
$$

Theorem 22 (Implicit Differentiation) Suppose that z is given implicitly as a function $z=f(x, y)$ by an equation $F(x, y, z)=0$, i.e., $F(x, y, f(x, y))=0$ for all (x, y) in the domain of $f(x, y)$. Then:

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} .
$$

Example 23 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
Solution: Let $F(x, y, z)=x^{3}+y^{3}+z^{3}+6 x y z-1$. Then, from Theorem 22, we have

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{3 x^{2}+6 y z}{3 z^{2}+6 x y}=-\frac{x^{2}+2 y z}{z^{2}+2 x y} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{3 y^{2}+6 x z}{3 z^{2}+6 x y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y} .
\end{aligned}
$$

Definition 24 (Directional Derivative) The directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
Definition 25 (Directional Derivative) The directional derivative of $f(x, y, z)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b, c\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b, z_{0}+h c\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

if this limit exists.
Definition 26 (Gradient) If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} .
$$

Definition 27 (Gradient) For $f(x, y, z)$, a function of three variables,

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

The next two theorems give simple rules for calculating the directional derivative of a function in 2 or 3 variables in terms of the gradient of the function.

Theorem 28 If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b .
$$

Theorem 29 If f is a differentiable function of x, y, and z, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b, c\rangle$ and

$$
D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u} .
$$

By the above two theorems, we have for any unit vector \mathbf{u},

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||u| \cos (\theta)=|\nabla f| \cos (\theta)
$$

Thus, the next theorem holds.
Theorem 30 Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Example 31 Find the directional derivative of the function $f(x, y)=x^{2} y^{3}-$ $4 y$ at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$.

Solution : We first compute the gradient vector at $(2,-1)$:

$$
\begin{gathered}
\nabla f(x, y)=2 x y^{3} \mathbf{i}+\left(3 x^{2} y^{2}-4\right) \mathbf{j} \\
\nabla f(2,-1)=-4 \mathbf{i}+8 \mathbf{j} .
\end{gathered}
$$

Note that \mathbf{v} is not a unit vector, but since $|\mathbf{v}|=\sqrt{29}$, the unit vector in the direction of \mathbf{v} is

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{2}{\sqrt{29}} \mathbf{i}+\frac{5}{\sqrt{29}} \mathbf{j} .
$$

Therefore, by Theorem 28, we have

$$
\begin{gathered}
D_{\mathbf{u}} f(2,-1)=\nabla f(2,-1) \cdot \mathbf{u}=(-4 \mathbf{i}+8 \mathbf{j}) \cdot\left(\frac{2}{\sqrt{29}} \mathbf{i}+\frac{5}{\sqrt{29}} \mathbf{j}\right) \\
=\frac{-4 \cdot 2+8 \cdot 5}{\sqrt{29}}=\frac{32}{\sqrt{29}} .
\end{gathered}
$$

Theorem 32 Suppose S is a surface determined as $F(x, y, z)=k$ for $k=$ constant. Then ∇F is everywhere normal or orthogonal to S. In particular, if $P=\left(x_{0}, y_{0}, z_{0}\right) \in S$, then the equation of the tangent plane to S at p is:

$$
\begin{equation*}
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 \tag{1}
\end{equation*}
$$

Example 33 Find the equations of the tangent plane and normal line at the point $(-2,1,-3)$ to the ellipsoid

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3 .
$$

Solution : The ellipsoid is the level surface (with $k=3$) of the function

$$
F(x, y, z)=\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}
$$

Therefore, we have

$$
\begin{array}{ccc}
F_{x}(x, y, z)=\frac{x}{2} & F_{y}(x, y, z)=2 y & F_{z}(x, y, z)=\frac{2 z}{9} \\
F_{x}(-2,1,-3)=-1 & F_{y}(-2,1,-3)=2 & F_{z}(-2,1,-3)=-\frac{2}{3}
\end{array}
$$

Then Equation 1 in Theorem 32 gives the equation of the tangent plane at $(-2,2,-3)$ as

$$
-1(x+2)+2(y-1)-\frac{2}{3}(z+3)=0
$$

which simplifies to $3 x-6 y+2 z=18=0$.
Since $\nabla F(-2,1,-3)=\left\langle-1,2,-\frac{2}{3}\right\rangle$, the vector equation of the normal line is:

$$
L(t)=\langle-2,1,-3\rangle+t\left\langle-1,2,-\frac{2}{3}\right\rangle .
$$

Definition 34 A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ when (x, y) is near (a, b). (This means that $f(x, y) \leq f(a, b)$ for all points (x, y) in some disk with center (a, b).) The number $f(a, b)$ is called a local maximum value. If $f(x, y) \leq f(a, b)$ for all $f(x, y)$ in the domain of f, then f has an absolute maximum at (a, b). If $f(x, y) \geq f(a, b)$ when (x, y) is near (a, b), then $f(a, b)$ is a local minimum value. If $f(x, y) \geq f(a, b)$ for all (x, y) in the domain of f, then f has an absolute minimum at (a, b).

The next theorem explains how to find local maxima and local minima for a function in two variables.

Theorem 35 If f has a local maximum of minimum at (a, b) and the firstorder partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

Definition 36 A point (a, b) is called a critical point of $f(x, y)$ if $f_{x}(a, b)=$ $f_{y}(a, b)=0$.

The next theorem gives a method for testing critical points of a function $f(x, y)$ to see if they represent local minima, local maxima or saddle points (a critical point (a, b) is a saddle point if the Hessian D defined in the next theorem is negative).

Theorem 37 (Second Derivative Test) Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=$ 0 and $f_{y}(a, b)=0$ (that is, (a, b) is a critical point of f). Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y(a, b)}\right]^{2} .
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is a saddle point.

To remember the formula for D it's helpful to write it as a determinant:

$$
D=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

Example 38 Find the local maximum and minimum values and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

Solution: We first locate the critical points:

$$
f_{x}=4 x^{3}-4 y \quad f_{y}=4 y^{3}-4 x
$$

Setting these partial derivatives equal to 0, we obtain the equations

$$
x^{3}-y=0 \quad y^{3}-x=0
$$

To solve these equations we substitute $y=x^{3}$ from the first equation into the second one. This gives

$$
0=x^{9}-x=x\left(x^{8}-1\right)=x\left(x^{4}-1\right)\left(x^{4}+1\right)=x\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
$$

so there are three real roots: $x=0,1,-1$. The three critical points are $(0,0)$, $(1,1)$, and $(-1,-1)$.

Next we calculate the second partial derivatives and $D(x, y)$:

$$
\begin{gathered}
f_{x x}=12 x^{2} \quad f_{x y}=-4 \quad f_{y y}=12 y^{2} \\
D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=144 x^{2} y^{2}-16 .
\end{gathered}
$$

Since $D(0,0)=-16<0$, it follows from case (c) of the Second Derivative Test that the origin is a saddle point; hence, f has no local maximum or minimum at $(0,0)$. Since $D(1,1)=128>0$ and $f_{x x}(1,1)=12>0$, we see from case (a) of the test that $f(1,1)=-1$ is a local minimum. Similarly, we have $D(-1,-1)=128>0$ and $f_{x x}(-1,-1)=12>0$, so $f(-1,-1)=-1$ is also a local minimum value.

Definition 39 A subset $D \subset \mathbb{R}^{2}$ is closed if it contains all of its boundary points.

Definition 40 A subset $D \subset \mathbb{R}^{2}$ is bounded if it contained within some disk in the plane.

Theorem 41 (Extreme Value Theorem for Functions of Two Variables) If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D :

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

The next theorem is stated for a function f of three variables but there is a similar theorem for a function of two variables (see Example 43 below).

Theorem 42 (Method of Lagrange Multipliers) To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$ (assuming that these extreme values exist and $\nabla g \neq \mathbf{0}$ on the surface $g(x, y, z)=$ k):

1. Find all values of x, y, z, and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

and

$$
g(x, y, z)=k
$$

2. Evaluate f at all the points (x, y, z) that result from step 1 . The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Example 43 Find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.

Solution: We are asked for the extreme values of f subject to the constraint $g(x, y)=x^{2}+y^{2}=1$. Using Lagrange multipliers, we solve the equations $\nabla f=\lambda \nabla g, g(x, y)=1$, which can be written as

$$
f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad g(x, y)=1
$$

or as

$$
\begin{gather*}
2 x=2 x \lambda \tag{2}\\
4 y=2 y \lambda \tag{3}\\
x^{2}+y^{2}=1 . \tag{4}
\end{gather*}
$$

From (2) we have $x=0$ or $\lambda=1$. If $x=0$, then (4) gives $y= \pm 1$. If $\lambda=1$, then $y=0$ from (3), so then (4) gives $x= \pm 1$. Therefore, f has possible extreme values at the points $(0,1),(0,-1)(1,0)$, and $(-1,0)$. Evaluating f at these four points, we find that

$$
f(0,1)=2 \quad f(0,-1)=2 \quad f(1,0)=1 \quad f(-1,0)=1 .
$$

Therefore, the maximum value of f on the circle $x^{2}+y^{2}=1$ is $f(0, \pm 1)=2$ and the minimum value is $f(\pm 1,0)=1$.

Example 44 Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the disk $x^{2}+$ $y^{2} \leq 1$.

Solution: We will compare the values of f at the critical points with values at the points on the boundary. Since $f_{x}=2 x$ and $f_{y}=4 y$, the only critical point is $(0,0)$. We compare the value of f at that point with the extreme values on the boundary from Example 43:

$$
f(0,0)=0 \quad f(\pm 1,0)=1 \quad f(0, \pm 1)=2 .
$$

Therefore, the maximum value of f on the disk $x^{2}+y^{2} \leq 1$ is $f(0, \pm 1)=2$ and the minimum value is $f(0,0)=0$.

We now start the second material for midterm 2 which concerns double integrals. For a positive, continuous function $f(x, y)$ defined on a closed and bounded domain $D \subset \mathbb{R}^{2}$, we denote by

$$
\iint_{D} f(x, y) d A
$$

the volume under the graph of $f(x, y)$ over D. This volume for a rectangle $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}=[a, b] \times[b, c] \subset \mathbb{R}^{2}$ can be estimated by the following Midpoint Rule for Double Integrals described in the next theorem. We also use this rule for defining the double integral when $f(x, y)$ is not necessarily positive.

Theorem 45 (Midpoint Rule for Double Integrals) Let m, n be positive integers. Let $x_{0}=a<x_{1}<x_{2}<\ldots<x_{m}=b$ be a division of [a, b] into n intervals $\left[x_{i}, x_{i}+1\right]$ of equal width $\Delta x=\frac{b-a}{m}$. Similarly, let $y_{0}=c<y_{1}<y_{2}<\ldots<y_{n}=d$ be a division of $[c, d]$ into m intervals $\left[y_{j}, y_{j+1}\right]$ of equal widths $\Delta y=\frac{d-c}{n}$. Then:

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\overline{x_{i}}, \overline{y_{j}}\right) \Delta A
$$

where $\overline{x_{i}}$ is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and $\overline{y_{j}}$ is the midpoint of $\left[y_{j-1}, y_{j}\right]$. Furthermore, the right-hand side above converges to the left-hand side as $m, n \rightarrow \infty$

Definition 46 If f is a continuous function of two variables, then its average value on a domain $D \subset \mathbb{R}^{2}$ is:

$$
\frac{\iint_{D} f(x, y) d A}{\operatorname{Area}(D)=\iint_{D} d A}
$$

Definition 47 The iterated integral of $f(x, y)$ on a rectangle $R=[a, b] \times[c, d]$ is

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \text { or } \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

One calculates the integral $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$ by first calculating $A(x)=$ $\int_{c}^{d} f(x, y) d y$, holding x constant, and then calculating $\int_{a}^{b} A(x) d x$ and similarly, for calculating the other integral.

Example 48 Evaluate the iterated integral.

$$
\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x
$$

Solution: Regarding x as a constant, we obtain

$$
\int_{1}^{2} x^{2} y d y=\left[x^{2} \frac{y^{2}}{2}\right]_{y=1}^{y=2}=x^{2}\left(\frac{2^{2}}{2}\right)-x^{2}\left(\frac{1^{2}}{2}\right)=\frac{3}{2} x^{2}
$$

Thus, the function A in the preceding discussion is given by $A(x)=\frac{3}{2} x^{2}$ in this example. We now integrate this function of x from 0 to 3 :

$$
\left.\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x=\int_{0}^{3}\left[\int_{1}^{2} x^{2} y d y\right] d x=\int_{0}^{3} \frac{3}{2} x^{2} d x=\frac{x^{3}}{2}\right]_{0}^{3}=\frac{27}{2}
$$

Example 49 Evaluate the iterated integral.

$$
\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y
$$

Solution: Here we first integrate with respect to x :
$\left.\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y=\int_{1}^{2}\left[\int_{0}^{3} x^{2} y d x\right] d y=\int_{1}^{2}\left[\frac{x^{3}}{3} y\right]_{x=0}^{x=3} d y=\int_{1}^{2} 9 y d y=9 \frac{y^{2}}{2}\right]_{1}^{2}=\frac{27}{2}$.
Theorem 50 (Fubini's Theorem) If f is continuous on the rectangle $R=$ $\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 51 Evaluate the double integral $\iint_{R}\left(x-3 y^{2}\right) d A$, where $R=$ $\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}$.

Solution: Fubini's Theorem gives

$$
\begin{gathered}
\iint_{R}\left(x-3 y^{2}\right) d A=\int_{0}^{2} \int_{1}^{2}\left(x-3 y^{2}\right) d y d x=\int_{0}^{2}\left[x y-y^{3}\right]_{y=1}^{y=2} d x \\
\left.=\int_{0}^{2}(x-7) d x=\frac{x^{2}}{2}-7 x\right]_{0}^{2}=-12 .
\end{gathered}
$$

Example 52 Find the volume of the solid S that is bounded by the elliptic paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$, and the three coordinate planes.

Solution: We first observe that S is the solid that lies under the surface $z=16-x^{2}-y^{2}$ and above the square $R=[0,2] \times[0,2]$. We are now in a position to evaluate the double integral using Fubini's Theorem. Therefore,

$$
\begin{gathered}
V=\iint_{R}\left(16-x^{2}-2 y^{2}\right) d A=\int_{0}^{2} \int_{0}^{2}\left(16-x^{2}-2 y^{2}\right) d x d y \\
=\int_{0}^{2}\left[16 x-\frac{1}{3} x^{3}-2 y^{2} x\right]_{x=0}^{x=2} d y \\
=\int_{0}^{2}\left(\frac{88}{3} y-4 y^{2}\right) d y=\left[\frac{88}{3}-\frac{4}{3} y^{3}\right]_{0}^{2}=48 .
\end{gathered}
$$

In general, for any continuous function $f(x, y)$ on a closed and bounded domain $D \subset \mathbb{R}^{2}$, the integral $\int_{D} \int f(x, y) d A$ is defined and it is equal to the area under the graph of $f(x, y)$ on D when the function is positive. There are two cases for D, called type I and type II, where the integral

$$
\iint_{D} f(x, y) d A
$$

can be calculated in a straightforward manner.
Definition 53 A plane region D is said to be of type \mathbf{I}, if it can be expressed as

$$
D=\left\{(x, y) \mid a \leq x \leq b, \quad g_{1}(x) \leq y \leq g_{2}(x)\right\},
$$

where $g_{1}(x)$ and $g_{2}(x)$ are continuous.
Definition 54 A plane region D is said to be of type II, if it can be expressed as

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

where h_{1} and h_{2} are continuous.
Theorem 55 If f is continuous on a type I region D such that

$$
D=\left\{(x, y) \mid a \leq x \leq b, \quad g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x .
$$

Theorem 56

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y .
$$

where D is a type II region given by Definition 54 .
Example 57 Evaluate $\iint_{D}(x+2 y) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.

Solution: The parabolas intersect when $2 x^{2}=1+x^{2}$, that is $x^{2}=1$, so $x= \pm 1$. We note that the region D, is a type I region but not a type II region and we can write

$$
D=\left\{(x, y)-1 \leq x \leq 1,2 x^{2} \leq y \leq 1+x^{2}\right\}
$$

Since the lower boundary is $y=2 x^{2}$ and the upper boundary is $y=1+x^{2}$, Definition 53 gives

$$
\begin{aligned}
\iint_{D}(x+2 y) d A & =\int_{-1}^{1} \int_{2 x^{2}}^{1+x^{2}}(x+2 y) d y d x=\int_{-1}^{1}\left[x y+y^{2}\right]_{y=2 x^{2}}^{y=1+x^{2}} d x \\
& =\int_{-1}^{1}\left(-3 x^{4}-x^{3}+2 x^{2}+x+1\right) d x \\
& =-3 \frac{x^{5}}{5}-\frac{x^{4}}{4}+2 \frac{x^{3}}{3}+\frac{x^{2}}{2}+\left.x\right|_{-1} ^{1}=\frac{32}{15}
\end{aligned}
$$

Example 58 Find the volume of the solid that lies under the paraboloid $z=$ $x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.

Solution 1: We see that D is a type I region and

$$
D=\left\{(x, y) \mid 0 \leq x \leq 2, \quad x^{2} \leq y \leq 2 x\right\}
$$

Therefore, the volume under $z=x^{2}+y^{2}$ and above D is

$$
\begin{gathered}
V=\iint_{D}\left(x^{2}+y^{2}\right) d A=\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{2}+y^{2}\right) d y d x \\
=\int_{0}^{2}\left[x^{2} y+\frac{y^{3}}{3}\right]_{y=x^{2}}^{y=2 x} d x=\int_{0}^{2}\left[x^{2}(2 x)+\frac{(2 x)^{3}}{3}-x^{2} x^{2}-\frac{\left(x^{2}\right)^{3}}{3}\right] d x \\
\left.=\int_{0}^{2}\left(-\frac{x^{6}}{3}-x^{4}+\frac{14 x^{3}}{3}\right) d x=-\frac{x^{7}}{21}-\frac{x^{5}}{5}+\frac{7 x^{4}}{6}\right]_{0}^{2}=\frac{216}{35} .
\end{gathered}
$$

Solution 2: We see that D can also be written as a type II region:

$$
D=\left\{(x, y) \mid 0 \leq y \leq 4, \quad \frac{1}{2} y \leq x \leq \sqrt{y}\right\}
$$

Therefore, another expression for V is

$$
\begin{gathered}
V=\iint_{D}\left(x^{2}+y^{2}\right) d A=\int_{0}^{4} \int_{\frac{1}{2} y}^{\sqrt{y}}\left(x^{2}+y^{2}\right) d x d y \\
=\int_{0}^{4}\left[\frac{x^{3}}{3}+y^{2} x\right]_{x=\frac{1}{2} y}^{x=\sqrt{y}} d y=\int_{0}^{4}\left(\frac{y^{\frac{3}{2}}}{3}+y^{\frac{5}{2}}-\frac{y^{3}}{24}-\frac{y^{3}}{2}\right) d y \\
\left.=\frac{2}{15} y^{\frac{5}{2}}+\frac{2}{7} y^{\frac{7}{2}}-\frac{13}{96} y^{4}\right]_{0}^{4}=\frac{216}{35} .
\end{gathered}
$$

Example 59 Evaluate the iterated integral $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$.
Solution: If we try to evaluate the integral as it stands, we are faced with the task of first evaluating $\int \sin \left(y^{2}\right) d y$. But it's impossible to do so in finite terms since $\int \sin \left(y^{2}\right) d y$ is not an elementary function. So we must change the order of integration. This is accomplished by first expressing the given iterated integral as a double integral. We have

$$
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x=\iint_{D} \sin \left(y^{2}\right) d A
$$

where

$$
D=\{(x, 0 \mid 0 \leq x \leq 1, \quad x \leq y \leq 1)\} .
$$

We see that an alternative description of D is

$$
D=\{(x, y) \mid 0 \leq y \leq 1, \quad 0 \leq x \leq y\}
$$

This enables us to express the double integral as an iterated integral in the reverse order:

$$
\begin{gathered}
\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x=\iint_{D} \sin \left(y^{2}\right) d A=\int_{0}^{1} \int_{0}^{y} \sin \left(y^{2}\right) d x d y=\int_{0}^{1}\left[x \sin \left(y^{2}\right)\right]_{x=0}^{x=y} d y \\
\left.=\int_{0}^{1} y \sin \left(y^{2}\right) d y=-\frac{1}{2} \cos \left(y^{2}\right)\right]_{0}^{1}=\frac{1}{2}(1-\cos 1)
\end{gathered}
$$

