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Abstract. In this article, we introduce a strategy to produce exotic rational
and elliptic ruled surfaces, and possibly new symplectic Calabi-Yau surfaces,
via constructions of symplectic Lefschetz pencils using a novel technique we call
breeding. We deploy our strategy to breed explicit symplectic genus–3 pencils,
whose total spaces are homeomorphic but not diffeomorphic to the rational sur-
faces CP2#pCP2 for p = 6, 7, 8, 9. Similarly, we breed explicit genus–3 pencils,
whose total spaces are symplectic Calabi-Yau surfaces that have b1 > 0 and
realize all the integral homology classes of torus bundles over tori.

1. Introduction

Since the advent of Gauge theory, many construction techniques, such as knot
surgery, rational blowdowns, generalized fiber sums and Luttinger surgery, have
been introduced and successfully employed to produce exotic smooth structures
on 4–manifolds, primarily through constructions of symplectic 4–manifolds homeo-
morphic but not diffeomorphic to smooth connected sums of standard 4–manifolds,
where those with small topology (i.e. small second homology) have proven to be
the most challenging. (e.g. [1, 2, 3, 7, 15, 20, 28, 29, 33, 32, 37, 40, 49, 52, 60, 62,
63, 67, 70].)

In this article we deploy a strategy to produce small symplectic 4–manifolds as
total spaces of Lefschetz pencils,1 which correspond to small positive factorizations
(i.e. small number of Dehn twists) we construct using a new technique we will dis-
cuss below. Recall that by the celebrated work of Donaldson [21] any compact
symplectic 4–manifold admits a Lefschetz pencil, and in turn, corresponds to a pos-
itive factorization in the mapping class group of an orientable surface [50, 61, 58].
For the small 4–manifolds we consider, the additional information presented by the
pencil structure will be crucial to detect the exotic smooth structures, as illustrated
by our first theorem:

Theorem A. Let X be a symplectic 4–manifold homeomorphic to a rational or
ruled surface Z with c21(Z) ≥ 0. Then X is an exotic Z if and only if it admits a
genus–g Lefschetz pencil with number of base points b ≤ 2g − 2− χh(Z).

1Conventions: We assume that Lefschetz pencils, unlike Lefschetz fibrations, always have base
points, whereas both have critical points and no exceptional spheres contained in the fibers.
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Here c21 = 2e+3σ is the first Chern number and χh = 1
4
(e+σ) is the holomorphic

Euler characteristic, where e and σ are the Euler characteristic and the signature
of the 4–manifold. Rational and ruled surfaces satisfying the c21 ≥ 0 condition are
the rational surfaces CP2# pCP2, for p ≤ 9, and S2 × S2 (which have χh = 1),
and the minimal elliptic ruled surfaces T 2 × S2 and T 2 ∼× S2 (which have χh = 0).
The existence of the Lefschetz pencils in the statement of the theorem are granted
by Donaldson, whereas our proof of the essential constraints on the topology of the
pencils uses Seiberg–Witten theory, and builds on the works of Taubes [72, 73],
McDuff [59] and Li–Liu [57]. We note that while there are numerous constructions
of minimal symplectic 4–manifolds homeomorphic but not diffeomorphic to the
rational surfaces CP2# pCP2, for p ≥ 2 (see all the reference listed above), there
are no known examples of exotic irrational ruled surfaces to date.

The homeomorphism types of the rational and elliptic ruled surfaces are easily
determined by their fundamental group and intersection form by Freedman [34],
and Hambleton–Kreck [45], respectively. Thus, powered by Theorem A, one can
produce exotic copies of these small 4–manifolds by constructing Lefschetz pencils
with the right algebraic invariants and small number of base points relative to the
fiber genus. As a successful implementation of this approach, we show that:

Theorem B. There are symplectic genus–3 Lefschetz pencils {(Xi,φ, fi,φ)} whose
total spaces have χh(Xi,φ) = 1 and c21(Xi,φ) = 3− i, and they include exotic rational

surfaces CP2#(6 + i)CP2 as well as infinitely many symplectic 4–manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The index φ for the family of pencils {(Xi,φ, fi,φ)} takes values in a certain infinite
subgroup of the mapping class group Mod(Σ1

3) for each i = 0, 1, 2, 3.

Each symplectic 4–manifold Xi,φ in the theorem is “almost minimal”, that is, it
is either minimal or at most once blow-up of a minimal symplectic 4–manifold; see
Remark 8. Notably, our family of genus–3 pencils with c21 = 3 are all hyperelliptic,
and therefore, by the work of Siebert-Tian [66], each X0,φ, including our exotic

CP2#6CP2, admits a symplectic involution and is a blow-down of a symplectic
double branched covering of a rational surface; see Remark 10. We should also note
that g = 3 is the smallest fiber genus for any Lefschetz pencil on an exotic rational
surface, and we moreover suspect that our examples in Theorem B are also optimal
in regard to the smallest exotic rational surfaces one can obtain via genus–3 pencils;
see Remark 9. While in this article we only study genus g = 3 pencils, one can
obtain much sharper results even with g = 4 or 5 pencils, as demonstrated in our
forthcoming work in [12].

We describe our Lefschetz pencils in Theorem B in terms of their monodromy
factorizations, which amount to positive Dehn twist factorizations of the boundary
multi-twist in the mapping class group of an orientable surface. We build these
pencils out of lower genera pencils, using a novel technique we call breeding, which
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consists of carefully embedding the positive factorizations for lower genera pencils
into the mapping class group of a higher genus surface in a way that one can cancel
all the negative Dehn twists (along non-boundary parallel curves) against positive
ones at the end. It is worth noting that, although we use the breeding technique
to derive new symplectic 4–manifolds from smaller ones, it is not an inherently
symplectic operation. In the intermediary steps we get achiral Lefschetz pencils
and fibrations which do contain negative nodes, but then we match them with
positive nodes and remove all these pairs —which corresponds to surgering out
self-intersection zero spheres contained in the fibers.

A simpler version of the breeding technique was used by Korkmaz and the author
(in an unpublished note) to produce hyperelliptic genus–g Lefschetz fibrations with
5g − 3 critical points, which yield the smallest hyperelliptic Lefschetz fibrations
when g = 3. Since the appearance of the first version of this paper on the arxiv,
the breeding technique has been used to produce several new Lefschetz pencils and
fibrations (e.g. [43, 4, 11, 12]) and especially played a vital role in the recent
resolution of Stipsicz’s conjecture on the signature of Lefschetz fibrations in [11].

In the last portion of our paper, we turn to symplectic Calabi-Yau surfaces.
Recall that a symplectic 4–manifold is called a symplectic Calabi-Yau surface if it
has trivial canonical class, in obvious analogy with complex Calabi-Yau surfaces.
The works of T.-J. Li and Bauer established that any symplectic Calabi-Yau surface
with b1 > 0 has the rational homology type of a torus bundle over torus [53, 55, 8],
and it remains an open question whether torus bundles over tori exhaust all the
diffeomorphism types of symplectic Calabi-Yau surfaces with b1 > 0 [53, 23]. As
stated by T.-J. Li [56], a posteriori reasoning for an affirmative answer to this
question often seems to stem from the lack of any new constructions of symplectic
Calabi-Yau surfaces. The surgical operations like knot surgery, simplest rational
blow-downs, generalized fiber sums or Luttinger surgery, do not produce any new
symplectic Calabi-Yau surfaces [47, 56, 75, 24].

Akin to our strategy for producing exotic rational and elliptic ruled surfaces, in
[13, 14] we implemented a strategy to construct (possibly new) symplectic Calabi-
Yau surfaces via positive factorizations for pencils. The breeding technique, which
is particularly effective for getting small positive factorizations, allows us to produce
small symplectic Calabi-Yau surfaces as well:

Theorem C. There are symplectic genus–3 Lefschetz pencils {(Xφ, fφ)} whose total
spaces are symplectic Calabi-Yau surfaces that realize all integral homology types of
torus bundles over tori, and they include a symplectic Calabi-Yau surface homeo-
morphic to the 4–torus and fake symplectic T 2 × S2s.

The index φ for the family of pencils {(Xφ, fφ)} takes values in a certain infinite
subgroup of the mapping class group Mod(Σ4

3). A fake T 2 × S2 is a 4–manifold
which has the same homology type as T 2 × S2 but is not diffeomorphic to it.
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We describe the Lefschetz pencils in Theorem C in terms of their monodromy fac-
torizations given in the equation (47), which feeds into Donaldson’s proposal of an-
alyzing monodromies of pencils on symplectic Calabi-Yau surfaces [22][Problem 5].
These are the first explicit monodromy factorizations of pencils on symplectic Calabi-
Yau surfaces with b1 > 0 in the literature, whereas many examples on symplectic
Calabi-Yau surfaces with b1 = 0 were obtained in [13, 14]. Following the publicizing
of an earlier version of this paper, similar examples were obtained by Hamada and
Hayano in [43] also by employing the breeding technique.

Since symplectic Calabi-Yau surfaces with b1 > 0 have the same Seiberg-Witten
invariants as torus bundles over tori, detecting any new symplectic Calabi-Yau sur-
faces among {Xφ} hangs on essentially the possibility of detecting a π1(Xφ) that
is not a torus bundle group; see Remark 14. At the time of writing, we have not
been able to determine whether all π1(Xφ) we get are torus bundle groups. Like-
wise, we have not been able to spot any fake symplectic T 2 × S2 among {Xφ} with
π1(Xφ) = Z2, which would make it homeomorphic to T 2 × S2, and thus an exotic
elliptic ruled surface. (There are torus bundle over tori which have the same homol-
ogy type as T 2×S2.) On the other hand, Hamada and Hayano were able to show in
[43] that our symplectic Calabi-Yau surface homeomorphic to the 4–torus is in fact
diffeomorphic to it, by comparing our example with a holomorphic pencil on the
standard 4–torus described by Smith; see Remark 15. While we do not know if any
other Xφ is standard, it is worth noting that if our family of symplectic Calabi-Yau
surfaces {Xφ} were to fully overlap with torus bundles over tori, then an additional
feature of our construction would imply that any of these bundles can be equipped
with a symplectic structure so that it is obtained via Luttinger surgeries from the
standard 4–torus [47][Conjecture 4.9]; see Remark 16.

Outline of the paper: We review the basic definitions and preliminary results on
Lefschetz pencils and fibrations, mapping class groups and positive factorizations,
and symplectic 4–manifolds and Calabi-Yau surfaces in Section 2. In Section 3, we
provide a characterization of small symplectic exotic rational surfaces (Theorem 3)
and that of exotic minimal ruled surfaces (Theorem 6), which together give Theo-
rem A. We breed our genus–3 pencils on exotic rational surfaces in Section 4, and
on symplectic Calabi-Yau surfaces with b1 > 0 in Section 5, which yield Theorems B
and C, respectively.
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2. Preliminaries

Here we quickly review the definitions and the basic properties of Lefschetz pencils
and fibrations, Dehn twist factorizations in mapping class groups of surfaces, and
symplectic 4–manifolds. The reader can turn to [41, 54, 15] for more details.

2.1. Lefschetz pencils and fibrations.

A Lefschetz pencil on a closed, smooth, oriented 4-manifold X is a smooth sur-
jective map f : X \ {bj} → S2, defined on the complement of a non-empty finite
collection of points {bj}, such that around every base point bj and critical point pi
there are local complex coordinates (compatible with the orientations on X and S2)
with respect to which the map f takes the form (z1, z2) 7→ z1/z2 and (z1, z2) 7→ z1z2,
respectively. A Lefschetz fibration is defined similarly for {bj} = ∅. Blowing-up at

each base point bj of a pencil (X, f), one obtains a Lefschetz fibration (X̃, f̃) with
disjoint (−1)–sphere sections Sj corresponding to each bj, and conversely, blowing
down disjoint (−1)–sphere sections of a Lefschetz fibration, one obtains a pencil.

We say (X, f) is a genus–g Lefschetz pencil or fibration for g the genus of a regular
fiber F of f . The fiber containing the critical point pi has a nodal singularity at
pi, which locally arises from shrinking a simple loop ci on F , called a vanishing
cycle. A singular fiber of (X, f) is called reducible if ci is separating. When ci is
null-homotopic on F , one of the fiber components becomes an exceptional sphere,
an embedded 2–sphere of self-intersection −1, which one can blow down without
altering the rest of the fibration.

In this paper we use the term Lefschetz fibration only when the set of critical
points {pi} is non-empty, i.e. when the Lefschetz fibration is non-trivial. We more-
over assume that the fibration is relatively minimal, i.e. there are no exceptional
spheres contained in the fibers, and also that the critical points pi lie in distinct
singular fibers, which can be always achieved after a small perturbation.

Allowing the local model (z1, z2) 7→ z1z̄2 around the critical points pi, which give
rise to negative nodes, all of the above notions extend to so-called achiral Lefschetz
pencils and fibrations.

2.2. Positive factorizations.

Let Σb
g denote a compact, connected, oriented surface genus g with b bound-

ary components, and simply write Σg when there is no boundary. We denote by
Mod(Σb

g) its mapping class group; the group composed of orientation-preserving self-

homeomorphisms of Σm
g which restrict to the identity along ∂Σb

g, modulo isotopies

that also restrict to the identity along ∂Σb
g. Let Mod(Σb

g, S) denote the stabilizer

subgroup of Mod(Σb
g) which consists of elements fixing the subset S ⊂ Σb

g point-

wise. Denote by tc ∈ Mod(Σb
g) the positive (right-handed) Dehn twist along the
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simple closed curve c ⊂ Σm
g . Its inverse t−1c is the negative (left-handed) Dehn twist

along c.

Let {ci} be a non-empty collection of simple closed curves on Σb
g, which do not

become null-homotopic when ∂Σb
g is capped off by disks, and let {δj} be a collection

of curves parallel to distinct boundary components of Σb
g. If the relation

(1) tcl · · · tc2tc1 = tδ1 · · · tδb

holds in Mod(Σb
g), we call the word W on the left-hand side a positive factorization

of the boundary multi-twist ∆ = tδ1 · · · tδb in Γbg. (We will also use ∂i instead
of δi when there are several surfaces with boundaries involved in our discussion.)
Capping off all the boundary components of Σb

g with disks induces a homomorphism

Mod(Σb
g) → Mod(Σg), under which W maps to a similar positive factorization of

the identity element 1 ∈ Mod(Σg).

The positive factorization in (1) gives rise to a genus–g Lefschetz fibration (X̃, f̃)
with b disjoint (−1)–sections Sj, and therefore a genus–g Lefschetz pencil (X, f)
with b base points. Identifying the regular fiber F with Σg, we can view the van-
ishing cycles of the fibration as the Dehn twist curves {ci}. Every Lefschetz pencil
and fibration can be described by such a positive factorization, which is called its
monodromy factorization [50, 58, 41].

Let W be a positive factorization of the form W = PP ′ in Mod(Σb
g), where

P and P ′ are some products of positive Dehn twists along curves which do not
become null-homotopic when ∂Σb

g is capped off. If P = Πi tci , as a mapping

class, commutes with some element φ ∈ Mod(Σb
g), we can then produce a new

positive factorization Wφ = P φP ′, where P φ denotes the conjugate factorization
φPφ−1 = Πi (φ tci φ

−1) = Πi tφ(ci) . In this case, we say Wφ is obtained from W by a
partial conjugation φ along P .

Allowing negative Dehn twists, which correspond to negative nodes, we can more
generally work with factorizations for achiral Lefschetz fibrations and pencils. All
of the above definitions and results extend to this more general setting.

2.3. Symplectic 4-manifolds and Kodaira dimension.

It was shown by Donaldson that every symplectic 4-manifold (X,ω) admits a
symplectic Lefschetz pencil whose fibers are symplectic with respect to ω [21].
Conversely, generalizing a construction of Thurston, Gompf showed that the to-
tal space of a Lefschetz pencil and fibration always admits a symplectic form ω with
respect to which all regular fibers and any preselected collection of disjoint sections
are symplectic [41]. Whenever we take a symplectic form ω on a Lefschetz pencil
or fibration (X, f), we will assume it is of Thurston-Gompf type, with respect to
which any explicitly mentioned sections will be assumed to be symplectic as well.
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The Kodaira dimension for projective surfaces can be extended to symplectic
4–manifolds as follows: Let KXmin

be the canonical class of a minimal model
(Xmin, ωmin) of (X,ω). The symplectic Kodaira dimension of (X,ω), denoted by
κ = κ(X,ω) is then defined as

κ(X,ω) =


−∞ if KXmin

· [ωmin] < 0 or K2
Xmin

< 0
0 if KXmin

· [ωmin] = K2
Xmin

= 0
1 if KXmin

· [ωmin] > 0 and K2
Xmin

= 0
2 if KXmin

· [ωmin] > 0 and K2
Xmin

> 0.

Remarkably, not only κ is independent of the minimal model (Xmin, ωmin) but also it
is independent of the particular symplectic form ω on X; so it is a smooth invariant
of the 4–manifold X [53]. Symplectic 4–manifolds with κ = −∞ are classified up
to symplectomorphisms, which are precisely the rational and ruled surfaces [54].

Symplectic 4–manifolds with κ = 0, which are the analogues of the Calabi-Yau
surfaces, are those with torsion canonical class [53]. It was shown by Tian-Jun Li,
and independently by Stefan Bauer [53, 8], that the rational homology type of any
minimal symplectic 4–manifold with κ = 0 is that of a torus bundle over a torus,
the K3 surface or the Enrique surfaces. In the first two cases we have symplectic
Calabi-Yau surfaces, which have trivial canonical class, whereas in the last case the
canonical class is torsion.

We have the following topological characterization of Lefschetz pencils on minimal
symplectic 4–manifolds with κ = 0, which can be easily derived from the more
general characterization for Lefschetz fibrations on symplectic 4–manifolds with
κ = 0 given in [13, Theorem 4.1], [65, Theorem 5.12]:

Proposition 1. Let (X, f) be a genus–g Lefschetz pencil with b base points, where
X is neither rational nor ruled. Then there is a symplectic form ω on X so that
(X,ω) is a symplectic Calabi-Yau or a rational homology Enriques surface if and
only if b = 2g − 2.

3. Topology of pencils on rational and elliptic ruled surfaces

In this section we will prove two theorems that might be of independent interest;
one on the topology of Lefschetz pencils and fibrations on (small) rational surfaces,
and one on (small) irrational ruled surfaces. These results enable one to tackle
producing exotic smooth structures on the rational surfaces CP2# pCP2, S2 × S2,
and the minimal elliptic ruled surfaces T 2 × S2 and T 2 ∼×S2, via constructions of
new positive factorizations, as we will try to demonstrate in the later sections.

3.1. Lefschetz pencils and fibrations on rational surfaces.

We first prove the following lemma, which shows that pencils on rational surfaces
always have a lot of base points with respect to the fiber genera:
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Lemma 2. The rational surfaces CP2#pCP2, for p ≤ 9, or S2 × S2, do not admit
any genus–g pencil with b < 2g−2 base points or any genus g ≥ 2 Lefschetz fibration.

Proof. We claim that the statement of the lemma holds even for non-relatively
minimal pencils and fibrations. With this in mind, it suffices to prove our claim for
X = CP2#9CP2, because we can blow-up on the fibers of a given genus–g Lefschetz
pencil or fibration on CP2#pCP2 with p < 9 or S2 × S2 to get one on X.

Now suppose for contradiction that X = CP2#9CP2 admits a genus–g pencil
with b < 2g−2 base points or a genus g ≥ 2 Lefschetz fibration. Note that in either
case g ≥ 2. For our arguments to follow, it will be convenient to allow b to be a
non-negative integer so that b = 0 marks the fibration case.

Let F = aH −∑9
i=1 ciEi be the fiber class, where H2(X) is generated by the

hyperplane class H and the exceptional classes E1, . . . , E9, which satisfy H2 = 1,
Ei · Ej = −δij, and H · Ei = 0. Since F 2 = b, we have

a2 = b+
9∑
i=1

c2i .

We can equipX with a Thurston-Gompf symplectic form ω which makes the fibers
symplectic. Moreover, we can choose an ω-compatible almost complex structure J ,
even a generic one in the sense of Taubes, with respect to which the pencil/fibration
is J-holomorphic for a suitable choice of almost complex structure on the base
2-sphere; see e.g [74]. It was shown by Li and Liu [57] that for a generic ω-compatible
J , the class H in the rational surface X has a J-holomorphic representative . Hence,
F andH both have J-holomorphic representatives, which implies that F ·H = a ≥ 0.

Since there is a unique symplectic structure on X up to deformation and sym-
plectomorphisms [57], we can apply the adjunction formula to get

2g − 2 = F 2 +K · F = b+ (−3H +
9∑
i=1

Ei) · (aH −
9∑
i=1

ciEi) = b− 3a+
9∑
i=1

ci .

Since a, b ≥ 0, and g ≥ 2, from the above equalities we have

3a =
√

9a2 =

√√√√9(b+
9∑
i=1

c2i ) ≥

√√√√9(
9∑
i=1

c2i ) =

√√√√(
9∑
i=1

1)(
9∑
i=1

c2i ) ≥

√√√√| 9∑
i=1

ci|2 ,

where the last inequality is by Cauchy-Schwartz. In turn, we get:

3a ≥

√√√√| 9∑
i=1

ci|2 = |
9∑
i=1

ci| = |2g − 2− b+ 3a| = 2g − 2− b+ 3a ,

which implies that b ≥ 2g − 2. The contradiction shows that there is no such fiber
class F . In turn, there is no such Lefschetz pencil or fibration. �
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The statement as stated is obviously not true for p > 9 ; for example there is a
genus–2 Lefschetz fibration on CP2#13CP2 (which in fact is the blow-up of a genus–
2 pencil on S2 × S2). Otherwise, one can generalize the above result to rational
surfaces CP2#pCP2 with p > 9, under particular assumptions for b and g with
respect to the number of blow-ups p.

Since by Donaldson any symplectic 4–manifold admits a Lefschetz pencil, and
since only rational surfaces admit genus–0 or genus–1 Lefschetz pencils and fibra-
tions, we can then conclude that:

Theorem 3. A symplectic 4-manifold X in the homeomorphism class of CP2# pCP2

with p ≤ 9 or S2×S2 is an exotic rational surface if and only if it admits a genus–g
pencil with b < 2g − 2 base points or a genus g ≥ 2 Lefschetz fibration.

As we mentioned earlier, there are numerous examples of symplectic 4–manifolds
homeomorphic but not diffeomorphic to CP2# pCP2, for 2 ≤ p ≤ 9, and they should
all admit genus–g pencils with b < 2g − 2 base points by the above theorem. How-
ever, in the literature there appears to be no examples of Lefschetz pencils (with
base points, no multiple fibers) on these 4–manifolds, even on the complex algebraic
ones. We will provide some novel symplectic examples admitting genus–3 pencils
in the next section.

As for fibrations, for K any genus g ≥ 1 fibered knot, knot surgered elliptic
surfaces E(1)K of Fintushel and Stern, yield exotic E(1) = CP2#9CP2, which
admit symplectic genus–2g Lefschetz fibrations [30]. Moreover, there are genus–2
symplectic Lefschetz fibrations in the homeomorphism classes of CP2# pCP2 for
p = 7, 8, 9 [15] and even holomorphic ones for p = 8, 9 [64].

Remark 4. When X is an exotic CP2# pCP2, with p ≤ 8, we can strengthen the
statement of Theorem 3 a bit. If the genus g ≥ 2 pencil on X had b = 2g − 3 base
points, blowing up all of them, we would get a Lefschetz fibration with b disjoint
(−1)–sphere sections. It then follows from [65, Theorem 5-12] that K2

Xmin
= 0,

which cannot be the case here since K2
Xmin

≥ K2
X = 9 − p > 0. Hence, any pencil

on such an exotic rational surface X can have at most 2g − 4 base points.

3.2. Lefschetz pencils and fibrations on minimal elliptic ruled surfaces.

We now show that pencils on minimal elliptic ruled surfaces also have a lot of
base points with respect to the fiber genera:

Lemma 5. The minimal elliptic ruled surfaces T 2 × S2 or T 2 ∼×S2 do not admit
any genus–g Lefschetz pencil with b ≤ 2g− 2 base points or any Lefschetz fibration.

Proof. These minimal elliptic surfaces do not admit genus g < 2 Lefschetz fibra-
tions for fairly elementary reasons (which do not require classification results): any
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genus–0 Lefschetz fibration has a simply-connected total space, and the Euler char-
acteristic of any genus–1 Lefschetz fibration is equal to the number of critical points,
and therefore it is positive. Clearly, neither one of these two implications work for
T 2 × S2 or T 2 ∼×S2.

Now suppose for a contradiction that X = T 2 × S2 or T 2 ∼×S2 admits a genus–g
pencil with b ≤ 2g − 2 base points or a Lefschetz fibration. Once again, it will be
convenient here to let b be a non-negative integer so that b = 0 marks the fibration
case. By our observation in the previous paragraph, we can assume that g ≥ 2.

We equip X with a Thurston-Gompf symplectic form ω which makes the fibers,
and in particular a regular fiber F , of the pencil/fibration symplectic. We can
choose an ω–compatible almost complex structure J with respect to which the pen-
cil/fibration is J-holomorphic, so in particular F is a J–holomorphic curve. Because
there is a unique symplectic structure on a minimal ruled surface up to deformations
and symplectomorphisms [57], we will be able to once again apply the adjunction
formula using a standard canonical class in each case. Furthermore, it will be im-
portant for our arguments that it was also shown in [57] that for any ω-compatible
almost complex structure J , the sphere fiber of the ruling on the elliptic surface
has a J–holomorphic representative. Therefore the algebraic intersection of F with
the sphere fiber is non-negative. Akin to our proof of Lemma 2, we will show that
neither one of the minimal elliptic ruled surfaces contains an embedded genus–g
symplectic surface with self-intersection ≤ 2g − 2, whereas F is such.

We will run our arguments for the spin and non-spin cases separately:

X = T 2 × S2: Here H2(X) ∼= Z2 is generated by S = {pt}×S2 and T = T 2×{pt},
where S · S = 0, T · T = 0, and S · T = 1. By a slight abuse of notation, we denote
the homology class of the fiber also by F , so F = xS + y T for some x, y ∈ Z.

As remarked above, the algebraic intersection of F with S is non-negative, which
means that F · S = y ≥ 0. Since F 2 = b, we have

b = 2xy ,

where b ≥ 0 and y ≥ 0 imply that x ≥ 0.

On the other hand, by the adjunction formula we get

2g − 2 = F 2 +KX · F = b+ (−2T ) · (xS + y T ) = b− 2x ,

which implies that 2x = b − (2g − 2) ≤ 0 by our assumption on b. It follows that
x = 0, and in turn, b = 0 by the first equality, and g = 1 by the second, which is a
contradiction.

X = T 2 ∼×S2: Now H2(X) ∼= Z2 is generated by the fiber S and section T of the
degree–1 ruling on X, where S · S = 0, T · T = 1, and S · T = 1. Let the fiber class
F be given by F = xS + y T , for some x, y ∈ Z.
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Since the algebraic intersection of F with S is non-negative, we have F ·S = y ≥ 0.
Since F 2 = b, we now have

b = 2xy + y2 = (2x+ y) y ,

where b ≥ 0 and y ≥ 0 imply that 2x+ y ≥ 0.

We apply the adjunction formula to get

2g − 2 = F 2 +KX · F = b+ (S − 2T ) · (xS + y T ) = b− 2x− y ,
which means that 2x+ y = b− (2g − 2) ≤ 0. As we also had 2x+ y ≥ 0, it follows
that 2x + y = 0, and then b = 0 by the first equality, and g = 1 by the second,
which once again contradicts our assumption on the fiber genus —–that g ≥ 2. �

The above result, at least as stated, does not generalize to pencils on other ruled
surfaces. First of all, there exist genus–g Lefschetz pencils with b = 2g−2 base points
on non-minimal elliptic ruled surfaces, even after a single blow-up; an example with
g = b = 2 can be found in the next section. Secondly, there are pencils on the
minimal ruled surfaces Σh×S2 and Σh

∼×S2 with fiber genus g = 2h and b = 4 base
points [42], so the statement fails for any h ≥ 2 in both spin and non-spin cases.

Using Donaldson’s result on the existence of Lefschetz pencils on symplectic
4–manifolds, we moreover conclude that:

Theorem 6. A symplectic 4-manifold X in the homeomorphism class of T 2 × S2

or T 2 ∼×S2 is an exotic elliptic ruled surface if and only if it admits a genus–g pencil
with b ≤ 2g − 2 base points or a Lefschetz fibration.

It is worth noting that to this date there are no known examples of exotic elliptic
ruled surfaces, despite their topological types being amenable to Freedman type
arguments [46]. While we plan to explore this direction elsewhere, in Section 5,
through positive factorizations for pencils, we will provide examples of fake sym-
plectic elliptic ruled surfaces, which have the same cohomology as T 2 × S2, but are
not diffeomorphic to it.

4. Exotic rational surfaces via symplectic genus-3 pencils

Here we construct positive factorizations for symplectic genus–3 Lefschetz pencils,
whose total spaces are homeomorphic but not diffeomorphic to rational surfaces.
These will be bred from genus–2 pencils on elliptic ruled surfaces. For a better
exposition, we first present our examples with χh = 1 and c21 = 0, 1, 2, and we
discuss our examples with χh = 1 and c21 = 3, whose constructions are a bit more
involved, afterwards.
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4.1. Breeding pencils with χh = 1 and c21 = 0, 1, 2.

In [15], Korkmaz and the author obtained the following relation in Mod(Σ1
2):

tetx1tx2tx3tdtCtx4 = tδ ,

which is a positive factorization for a genus–2 pencil with one base point on
T 2 × S2#2CP2. See Figure 2 for the curves xi, C, d, e (where the boundary compo-
nent δ is obtained by carving out a disk neighborhood of the marked point on right
end of the surface). Consider the embedding of Σ1

2 into Σ1
3 given by mapping the

boundary δ = ∂Σ1
2 to the curve C ′, and the remaining Dehn twist curves xi, C, d, e

to the ones shown in Figure 1, denoted by the same letters. After a single Hurwitz
move, and collecting all the Dehn twists on the same side, we get the following
relation in Mod(Σ1

3):

tetx1tx2tx3tdtB2tCt
−1
C′ = 1 ,(2)

where B2 = tC(x4). Rewrite this relation as P1 tCt
−1
C′ = 1, for P1 = tetx1tx2tx3tdtB2 .

Note that P1, tC and tC′ all commute with each other.

Next, we take the following lift of the positive factorization for Matsumoto’s
genus–2 Lefschetz fibration to Mod(Σ2

2) obtained by Hamada in [42]:

(tB0tB1tB2tC)2 = tδ1tδ2 ,

where δi are the boundary parallel curves, and the curves Bi and C are as shown on
the left-hand side of Figure 6. This is a positive factorization for a genus–2 pencil
with two base points on T 2 × S2#2CP2. After Hurwitz moves, and collecting all
the Dehn twists on the same side, we get the following relation in Mod(Σ2

2):

tB0tB1tB2tA0tA1tA2t
2
Ct
−1
δ1
t−1δ2 = 1 ,

where each Aj = tC(Bj), for j = 0, 1, 2, are as shown in Figure 6. We will describe
two different embeddings of this relation into Mod(Σ1

3).

Cap off the boundary component δ1 of Σ2
2, and then embed the resulting copy

of Σ1
2 into Σ1

3 via the embedding we used to derive the relation (2) above, so the
boundary δ2 is mapped to C ′, and all the other Dehn twist curves are as shown in
Figure 1, once again denoted by the same letters. So we have the following relation
in Mod(Σ1

3):

tB0tB1tB2tA0tA1tA2t
2
Ct
−1
C′ = 1 ,(3)

which we rewrite as P2 t
2
Ct
−1
C′ = 1, for P2 = tB0tB1tB2tA0tA1tA2 . Here P2, tC and tC′

all commute with each other.

Lastly, consider an embedding of Σ2
2 into Σ1

3 so that δ1 is mapped to c, δ2 is
mapped to ∂ = ∂Σ1

3, and the remaining curves are as shown in Figure 1, where
we use a prime symbol when denoting the curves by the same letters. This gives a
third relation in Mod(Σ1

3):

tB′
0
tB′

1
tB′

2
tA′

0
tA′

1
tA′

2
t2C′t−1C = t∂ ,(4)
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C

x1

x3

x2

d

e

B2 B′
2

B0

B1

B′
0

B′
1

C ′

x4 A0 A′
0

A1 A′
1

A2 A′
2

Figure 1. The curves C, x1, x2, x3, x4, d, e of the first embedding
are given on the left. The curves B0, B1, B2, A0, A1, A2 of the second
embedding (except for C, which is already given on the left) and C ′, B′0,
B′1, B

′
2, A

′
0, A

′
1, A

′
2 of the third embedding are on the right.



14 R. İ. BAYKUR

which we rewrite as P ′2 t
2
C′t−1C = tδ, for P ′2 = tB′

0
tB′

1
tB′

2
tA′

0
tA′

1
tA′

2
. Similarly, P ′2, tC and

tC′ all commute with each other.

With these three embeddings in hand, we can now describe our positive factoriza-
tions. Let φ be any mapping class in Mod(Σ1

3, S), the subgroup of Mod(Σ1
3) which

consists of elements fixing the set S := {C,C ′} point-wise. Then we have

(P1)
φP1P

′
2 tC = (P1tCt

−1
C′ )

φ P1tCt
−1
C′ P

′
2 t

2
C′t−1C = 1 · t∂ · 1 = t∂ ,

where the first equality follows from the commutativity relations noted above and
the fact that φ commutes with tCt

−1
C′ . The second equality follows from the rela-

tions (2)–(4). Therefore W1,φ = (P1)
φP1P

′
2tC is a positive factorization of the bound-

ary twist t∂ in Mod(Σ1
3). By identical arguments, we see that W2,φ = (P1)

φP2P
′
2 t

2
C

and W3,φ = (P2)
φP2P

′
2 t

3
C are also positive factorizations of t∂ in Mod(Σ1

3).

Each Wi,φ prescribes a symplectic genus–3 Lefschetz pencil (Xi,φ, fi,φ) with one
base point, equipped with a Thurston–Gompf symplectic form. We claim that
χh(Xi,φ) = 1 and c21(Xi,φ) = 3− i for each i = 1, 2, 3.

The Euler characteristic of Xi,φ is given by

e(Xi,φ) = 4− 4g + `− b = 4− 4 · 3 + (18 + i)− 1 = 9 + i ,

where g and b are the genus and the number of base points of the pencil, and ` is
the number of critical points, which is the same as the number of Dehn twists in
the positive factorization Wi,φ.

Since we have explicit positive factorizations for the pencils (Xi,φ, fi,φ), the sig-
nature of each Xi,φ can be easily calculated using the work of Endo–Nagami in [25],
which states that the signature of the pencil is equal to the algebraic sum of the
signatures of the mapping class group relations used to derive this positive factor-
ization from the trivial word in Mod(Σ1

3). Since the signature of any embedding of
a relation into a higher genus surface is the same, and since Hurwitz moves, con-
jugations and cancellations of positive–negative Dehn twist pairs do no change the
signature, we just need to understand the signatures of the genus–2 relations we
used as our building blocks. The signature of the relation (2) is the same as the
signature of the genus–2 pencil with one base point on T 2×S2#2CP2, which is −2.
The signature of the relation (3) is that of the genus–2 pencil with one base point
on T 2 × S2#3CP2 (recall that we capped off one of the boundaries first), which is
−3. Finally, the signature of the relation (4) is that of the genus–2 pencil with two
base points on T 2 × S2#2CP2, which is −2. We conclude that σ(Xi,φ) = −5− i.

Hence, χh(Xi,φ) = 1
4
(e(Xi,φ) + σ(Xi,φ)) = 1

4
(9 + i− 5− i)) = 1 for each i = 1, 2, 3,

whereas c21(Xi,φ) = 2 e(Xi,φ) + 3σ(Xi,φ) = 2(9 + i) + 3(−5− i) = 3− i, as claimed.
Note that the only rational or ruled surfaces which have the same invariants are the
rational surfaces CP2# (6 + i)CP2, which by Lemma 2, cannot admit such pencils.
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4.2. Breeding pencils with χh = 1 and c21 = 3.

In our next construction we strive to get hyperelliptic pencils. While getting
hyperelliptic positive factorizations at every step will constrain some of the freedom
we have in our breeding constructions, we will also leverage this additional property
whenever we can.

Our construction will be comparable to that of the positive factorization W3,φ in
the previous section, where we employed three embeddings of —various lifts of—
the positive factorization for Matsumoto’s genus–2 Lefschetz fibration. Here we will
get our examples using three different embeddings of —various lifts of— the positive
factorization for the genus–2 Lefschetz fibration of Korkmaz and the author in [15].
This positive factorization, after a single Hurwitz move as before, has the following
lift in Mod(Σ3

2):

tetx1tx2tx3tdtB2tC = tδ1tδ2tδ3 ,(5)

where the curves xi, B2, C, d, e are as shown in Figure 2. We will simply use the
same labels for the Dehn twist curves xi, B2, C, d, e for any other relation we derive
from (5) by capping off some of the boundary components δ1, δ2, δ3.

A comprehensive proof of the relation (5) is given in [12], where it is also shown
that this is a positive factorization for a genus–2 pencil with two marked points on
the elliptic ruled surface T 2 ∼×S2. It can also be verified in a straightforward fashion
using the Alexander method [26] Below we sketch yet another argument based on
the hyperelliptic symmetry of the monodromy curves. This line of arguments can
be proved to be useful for similar calculations in general.

Let (X, f) be the hyperelliptic genus–2 Lefschetz fibration corresponding to the
positive factorization tetx1tx2tx3tdtB2tC = 1 in Mod(Σ2), where X ∼= T 2×S2# 3CP2

is equipped with a Thurston–Gompf symplectic form [15]. As shown in [66, 38], there
is a symplectic involution on X extending the hyperelliptic involution on the fibers,
and f is the relative minimalization of a Lefschetz fibration obtained via the induced
symplectic double branched cover X#3CP2 → S2×S2# 6CP2 (where the blow-ups
are for the reducible fibers). The branch set consists of a multisection B of the
latter fibration, which intersects every fiber at the fixed points of the hyperelliptic
involution, and BE that consists of exceptional spheres contained in the reducible
fibers. Now, observe that when we isotope the monodromy curves of (X, f) so that
they are symmetric under the obvious hyperelliptic involution obtained by rotating
the surface Σ2 in Figure 2 by a π–degree rotation along the x–axis (taking z–axis to
be perpendicular to the page), they miss the three marked points (drawn in blue in
the figure) of the fixed points of the hyperelliptic involution, whereas the four non-
separating curves go through the other three points. We can deduce the topology of
the branch set from this very data, and in particular conclude that the multisection
B consists of three disjoint (−1)–sphere sections E1, E2, E3 (one for each marked
point) and a 3–section which is a square zero symplectic 2–sphere (going through the
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x1

x2

x3

x4 B2

C

d

e

Figure 2. The curves C, x1, x2, x3, x4, d, e in the lift of Baykur–
Korkmaz genus–2 positive factorization to Mod(Σ3

2), along with the curve
B2 one gets after a Hurwitz move

other three fixed points). Circling back to our original discussion, the (−1)–sections
E1, E2, E3 yield the lift (5).

We are now ready to describe our three embeddings.

Note that we have now drawn the surface Σ1
3 so that its boundary curve ∂ is as

shown in Figure 3. With this in mind, our first embedding is essentially same as the
one yielded the relation (2) in Mod(Σ1

3): Cap off the boundary components δ1 and
δ2 of Σ3

2 and then embed it into Σ1
3 so that δ3 maps to C ′ and the rest of the Dehn

twist curves are as shown in Figure 1, except the boundary ∂Σ3, which is outside
of their support, is shifted. Using the same notation as before, we get the relation
P1 tCt

−1
C′ = 1 in Mod(Σ1

3), where P1 = tetx1tx2tx3tdtB2 .

For our second embedding, cap off the boundary component δ3 of Σ3
2, and then

embed the resulting copy of Σ2
2 into Σ1

3 so that

δ1 7→ C , δ2 7→ ∂ , C 7→ C ′ ,
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z

Figure 3. The surface Σ1
3 with shifted boundary. The curves C ′, x′1, x

′
2,

x′3, x
′
4, d

′, e′ of the second embedding are on the right, and the curves C,
x′′1, x′′2, x′′3, B2, d

′′, e′′ of the third embedding are given on the left. The
Dehn twist curve z in the conjugation φ is on the top left (in green).
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and the remaining curves are as shown in Figure 3, where we once again use a prime
symbol when denoting the curves by the same letters. For our arguments to follow,
here it is more convenient to take the genus–2 relation as tx4tetx1tx2tx3tdtC = tδ1tδ2 ,
where we moved tB2 back over tC by a Hurwitz move and then applied a cyclic
permutation. So we get the following relation in Mod(Σ1

3):

tx′4te′tx′1tx′2tx′3td′tC′t−1C = t∂ ,(6)

which we rewrite as P ′1 td′tC′t−1C = tδ, for P ′1 = tx′4te′tx′1tx′2tx′3 . Importantly, P ′1td′ , tC ,

tC′ and t∂ all commute with each other.

For our last embedding, cap off the boundary components δ1 and δ2 of Σ3
2, and

then embed the resulting copy of Σ1
2 into Σ1

3 so that δ3 maps to the curve d′ above,
where the curves e′′, x′′1, x

′′
2, x

′′
3, d
′′, B2, C, d

′ are as shown in Figure 3. (Note that we
get the same B2, C curves.) So we obtain another relation in Mod(Σ1

3):

te′′tx′′1 tx′′2 tx′′3 td′′tB2tCt
−1
d′ = 1 ,(7)

which we rewrite as P ′′1 t
−1
d′ = 1, for P ′′1 = te′′tx′′1 tx′′2 tx′′3 td′′tB2tC . Here P ′′1 and td′

commute.

We can now describe our positive factorizations using the three embeddings above.
Let φ be any mapping class in the stabilizer group Mod(Σ1

3, d
′). Then

P1 P
′
1 (P ′′1 )φ = (P1 tC t

−1
C′ ) (P ′1 td′tC′t−1C )(P ′′1 t

−1
d′ )φ = 1 · t∂ · 1 = t∂ .

Here the first equality follows from the commutativity relations we noted above,
along with our choice of φ as follows: In the middle, the multi-twist tC′t−1C commutes
with P ′1, so we can bring it to its left and cancel it against tCt

−1
C′ . Since φ stabilizes the

curve d′, we have td′ = (td′)
φ, so we can now take the td′ factor into the conjugated

expression, and then, because it commutes with P ′′1 , we can move it to its right and
cancel against t−1d′ within the parentheses. The second equality is the product of the
equalities (2),(6) and (7).

Hence we have obtained a positive factorization W0,φ = P1P
′
1(P

′′
1 )φ of the bound-

ary twist tδ in Mod(Σ1
3). Each W0,φ prescribes a symplectic genus–3 Lefschetz pencil

(X0,φ, f0,φ) with one base point, equipped with a Thurston–Gompf symplectic form.

As before, we can calculate the Euler characteristic of X0,φ as

e(X0,φ) = 4− 4g + `− b = 4− 4 · 3 + 18− 1 = 9 ,

and the signature of X0,φ as the signature of the relation W0,φ after [25]. The
latter is equal to the sum of the signatures of the three relations (2),(6) and (7),
which correspond to pencils on T 2 ∼×S2# 2CP2, T 2 ∼×S2#CP2 and T 2 ∼×S2# 2CP2,
respectively. (In the case of the second embedding, since its second boundary twist
tδ2 was mapped to t∂, it now corresponds to the base point of the genus–3 pencil.)
So we get σ(X0,φ) = −2 − 1 − 2 = −5. Therefore, χh(X0,φ) = 1 and c21(X0,φ) = 3,
as claimed. The only rational or ruled surface which has the same invariants is
CP2# 6CP2, which by Lemma 2, cannot admit such pencils.
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Lastly, observe that the Dehn twist curves in all three factors P1, P
′
1 and P ′′1

involved in W0,φ commute with the obvious involution on Σ1
3 given by a π–rotation

of surface along the x–axis in Figure 3 (taking z–axis perpendicular to the page).
If we let HMod(Σ1

3) denote the symmetric mapping class group with respect to this
involution [26], then for any φ in the subgroup Mod(Σ1

3, d
′) ∩ HMod(Σ1

3), we get a
positive factorization W0,φ prescribing a hyperelliptic pencil (X0,φ, f0,φ).

4.3. Homeomorphism and homology types of c21 = 0, 1, 2 examples.

Recall that we have e(Xi,φ) = 9 + i and σ(Xi,φ) = −5 − i, for i = 0, 1, 2, 3.
None of our examples have even intersection forms, which can be easily seen by the
existence of reducible fibers in Xi,φ, which have self-intersection −1. To be able to
pin down the homeomorphism and integral homology types of these 4–manifolds,
it remains to determine their fundamental groups and the first integral homology
groups, which we will do so for particular choices of φ.

Below, we will first carry out these calculations for our examples (Xi,φ, fi,φ) with
i = 1, 2, 3, and then do the same for the i = 0 case in the next subsection. Here we
aspire to keep our calculations simple but also generate as many fundamental groups
as possible. Finding the right balance will come at a cost of getting a somewhat
asymmetric picture; the fundamental groups of Xi,φ will realize any quotient of Z2

when i = 1, 3, and any quotient of Z when i = 0, 2.

Let φ = t−m1
b1

tm2
a2

, where b1, a2 are as in Figure 4. Since b1 and a2 are disjoint from
C and C ′, we have φ ∈ Mod(Σ1

3, S) for S = {C,C ′}, as required. Denote the positive
factorizations in this case by Wi,m := Wi,φ, where for i = 1, 3, we take φ = t−m1

b1
tm2
a2

and m = (m1,m2) ∈ N2, whereas for i = 2, we take φ = t−5b1 t
m
a2

and m ∈ N.
Now, set (Xi,m, fi,m) := (Xi,φ, fi,φ), and further set (Xi, fi) := (Xi,m, fi.m) in the
specific cases of m = (1, 1) when i = 1, 3, and m = 1 when i = 2.

We claim that π1(Xi,m) is (Z /m1 Z) ⊕ (Z /m2 Z), for i = 1, 3, and Z /mZ, for
i = 2. In particular each Xi is simply–connected.

Let (X̃i,m, f̃i,m) be the Lefschetz fibration we obtain by blowing-up the base points
of the pencil (Xi,m, fi,m). Let {aj, bj} be the standard generators of π1(Σg) as shown
in Figure 4. Using the standard handlebody decomposition for a Lefschetz fibration

with a section, we obtain a finite presentation for π1(Xi,m) = π1(X̃i,m) of the form

(8) 〈 a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], Ri,m,1, . . . , Ri,m,18+i 〉 ,
where {Ri,m,k}18+ik=1 are relators obtained by expressing the Dehn twist curves in the
positive factorization Wi,m in the basis {aj, bj}3j=1. We denote the inverse of any
fundamental group element x by x̄.

In fact, we will first show that a subset of these relators, which come from Dehn
twist curves that are all present in each factorization Wi,m, for i = 1, 2, 3, already
yield an abelian quotient. Since any further quotient will also be abelian, at that
point it will suffice to consider only the abelianizations of all the relators {Ri,m,k}18+ik=1 .
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a1 a2 a3

b1 b2 b3

Figure 4. Generators aj , bj of π1(Σ3)

Each positive factorization Wi,m contains the factor P ′2 tC . So the following rela-
tions hold for the finite presentations we have for each π1(Xi,m):

[a1, b1][a2, b2][a3, b3] = 1,(9)

[a1, b1] = 1,(10)

a2a3 = 1,(11)

a2b̄2a3b̄3 = 1,(12)

b3b2 = 1,(13)

where the relators (10)–(13) come from the vanishing cycles C,B′0, B
′
1, B

′
2, respec-

tively. We have a3 = ā2 from (11) and b3 = b̄2 from (13). Together with (12), these
imply [a2, b2] = 1 and [a3, b3] = 1. We conclude [aj, bj] = 1 for every j = 1, 2, 3.

From the factor P1, we get the following relators (among many others)

a1(b̄1a2b2)
2 = 1,(14)

a1b̄
3
1a2b2a2 = 1,(15)

a1b̄
5
1a2[b2, a2]b1a2 = 1,(16)

b2b1[b3, a3] = 1,(17)

induced by the vanishing cycles x1, x2, x3 and B2, respectively. Adding these to the
previous relators from the factor P ′2, we immediately see that the commutativity of
a3 and b3 and (17) imply b1 = b̄2. So (14) implies that a1 = (b̄2ā2b̄2)

2, and since a2
and b2 commute, we get a1 = ā22b̄

4
2

On the other hand, if we have the factor P2 instead, we get the following relators
(again, among many others)

a1a2 = 1,(18)

b2ā2b1ā1[b3, a3] = 1,(19)

b2b1[b3, a3] = 1,

induced by the vanishing cycles B0, B1 and B2, respectively. We get a1 = ā2, and

together with the relators from P ′2 we once again get b1 = b̄2, since [a3, b3] = 1.

Now, since the positive factorization W1,m contains the factor P1P
′
2 tC and the

positive factorizations W2,m and W3,m both contain the factor P2P
′
2 tC , the above
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discussion shows that every π1(Xi,m) is a quotient of an abelian group generated by
a2 and b2. It therefore remains to look at the abelianizations of the relators coming
from the remaining Dehn twist curves, i.e. we can simply look at the homology
classes of the vanishing cycles.

Without the conjugated factor, we have the abelianized relations

(20) a3 = −a2 and b3 = −b2 = b1 for all Wi,m

and depending on weather Wi contains the factor P1 or P2, either

a1 + 2a2 + 4b2 = 0 for W1,m, or(21)

a1 + a2 = 0 for W2,m and W3,m,(22)

where we used (20) to simplify the relators. These relators amount to all the other
generators being obtained from a2 and b2.

In fact, there are no other relations coming from the non-conjugated factors P1, P2

or P ′2: This is easy to see by abelianizing the relators (9)–(19), which include all
the relators induced by the curves x1, x2, x3, B0, B1, B2, B

′
0, B

′
1, B

′
2. Missing are the

relators induced by the separating curves d, e from P1, the curves A0, A1, A2 from
P1, and the curves A′0, A

′
1, A

′
2 from P ′2. The first two are trivial in homology, so they

have no contribution to the list of relators we already have. On the other hand, for
each j = 0, 1, 2, Aj is homologous to Bj, because [Aj] = [tC(Bj)] = [Bj]+(C ·Bj)[C],
where C is a separating cycle. Similarly each A′j is homologous to B′j. Therefore the

abelianized relations they induce are identical to those we already had from Bj, B
′
j.
2

It remains to look at the abelianizations of the relators coming from the conju-
gated factors P φ

1 or P φ
2 . When i = 1, 3, for φ = t−m1

b1
tm2
a2

, we easily check using the
Picard-Lefschetz formula that we get the additional relators:

b1 +m2a2 + b2 = 0 for W1,m and W3,m,(23)

a1 +m1b1 + (2 + 4m2)a2 + 4b2 = 0 for W1,m,(24)

a1 +m1b1 + a2 = 0 for W3,m.(25)

The relations (20) and (23) imply that m2 a2 = 0. The remaining relators involved
in W1,m or W3,m then easily give m1 b2 = 0. Hence, for i = 1, 3, we have

π1(Xi,m) = (Z /m1 Z)⊕ (Z /m2 Z) ,

as claimed.

On the other hand, when i = 2, for φ = t−5b1 t
m
a2

, we get the following additional
relators in W2,m:

b1 +ma2 + b2 = 0(26)

a1 + 5b1 + (2 + 4m)a2 + 4b2 = 0(27)

2For the proof of the simply-connected case, one could skip this whole paragraph, since we
would only need to find enough relations to kill the fundamental group.
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This time, the relations (20) and (26) imply that ma2 = 0, but then if we use this
identity and substitute a1 = −a2 and b1 = −b2 into the relator (27), we get b2 = a2.
Therefore, the m–torsion element a2 generates the whole group. So we have

π1(X2,m) = Z /mZ.

In particular, when i = 1, 3, we get a trivial group for (m1,m2) = (±1,±1),
and when i = 2, we get a trivial group for m = 1. So Xi is simply-connected
for each i = 1, 2, 3. By Freedman’s celebrated work [34], each Xi homeomorphic to
CP2# (6+i)CP2, for i = 1, 2, 3.3 However, they are not diffeomorphic by Theorem 3.

4.4. Homeomorphism and homology types of c21 = 3 examples.

Now we take φ = t−m−10b1
tz, where b1 and z are as in Figures 4 and 3. Since

φ ∈ Mod(Σ1
3, d
′) ∩ HMod(Σ1

3), for each such φ, the positive factorization W0,φ

prescribes a hyperelliptic genus–3 pencil (X0,φ, f0,φ). To sync up our notation with
the c21 = 0, 1, 2 examples, set W0,m := W0,φ and (X0,m, f0,m) := (X0φ, f0,φ), while
noting that the parameter m takes values in N (rather than in N2). Finally, let
(X0, f0) := (X0,1, f0,1). We claim that π1(X0,m) = Z /mZ, and in particular X0 is
simply-connected.

As before, we calculate the fundamental group using the presentation of the
form (8) induced by the pencil structure. We will first write down only some of the
relators we get from the Dehn twist curves in the positive factorization W0,m and
observe that any π1(X0,m) will be a quotient of an abelian group. It will then suffice
to look at the abelianized relators induced by the remaining Dehn twist curves, and
run the calculation at the level of homology.

The following relations hold in π1(X0,m):

[a1, b1][a2, b2][a3, b3] = 1.(28)

a1(b̄1a2b2)
2 = 1,(29)

a1b̄
3
1a2b2a2 = 1,(30)

[b1, a2b2a1] = 1,(31)

[a2, b̄1a2b2] = 1,(32)

a2(b̄2a3b3)
2 = 1,(33)

a3b̄3ā3b̄2[a3, b3] = 1,(34)

[a1, b1] = 1,(35)

where the first one is the surface relation, and (29)–(32) are induced by x1, x2, e, d
coming from the P1 factor, (33)–(34) by x′1, x

′
4 from P ′1 and (35) by C from (P ′′1 )φ.

3Homeomorphism types of other Xi,m can also be determined using extensions of Freedman’s
work by Hambleton, Kreck and Teichner for respective fundamental groups; for example by [45] we
can see that when i = 1, 3, for m = (p, 1), and when i = 2, for m = p, each Xi,m is homeomorphic

to CP2#(6 + i)CP2#Lp, where Lp is the spun of the Lens space L(p, 1).
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We can rewrite (30) as a1b̄
2
1a2b̄1a2b2 = 1 using the commutativity relation (32).

Setting this relator equal to the relator (29), we get: a1b̄
2
1a2b̄1a2b2 = a1b̄1a2b2b̄1a2b2,

which, through cancellations, give b̄1a2 = a2b2. Using this last identity, we can
rewrite (31) as [b1, b̄1a2a1] = 1. This implies that [b1, a2a1] = 1. However, by (35), b1
commutes with a1, so we can further conclude that [b1, a2] = 1. Since a2 commutes
with b1, we derive from (32) that [a2, b2] = 1. In turn, using (28) and (35) we
conclude that [a3, b3] = 1 as well.

We are now ready to show that a3 and b1 generate the whole group. Since we
saw that b̄1a2 = a2b2, the commutativity of a2 and b2 implies that b2 = b̄1. Since a3
and b3 commutes, (34) gives b3 = b̄2, which in turn means b3 = b1. Note that this
last identity and the commutativity of a3 and b3 now shows that [a3, b1] = 1. Now

by (33), we have a2 = (b̄3ā3b2)
2, which implies that a2 = (b̄1ā3b̄1)

2. After commuting
the factors, we can rewrite the last identity as a2 = ā23 b̄

4
1. Similarly, by (29), we have

a1 = (b̄2ā2b1)
2, which, after substitutions becomes a1 = (b1(b

4
1a

2
3)b1)

2, so a1 = b121 a
4
3.

Underlined equalities we obtained above show that a3 and b1 generate the whole
group and commute with each other. Hence, π1(X0,m) is the quotient of an abelian
group with two generators. To finish our calculation of π1(X0,m), it now suffices
to write out the abelianizations of the relators induced by all the Dehn twist
curves in the positive factorization W0,m. Clearly the separating Dehn twists do
not contribute any non-trivial abelianized relators, whereas each quadruple of non-
separating Dehn twists coming from the factors P1, P

′
1 and (P ′′2 )φ, respectively, can

be seen to give only two linearly independent abelianized relators. For instance, the
curves x1, x2, x3, B2 in the P1 factor yield the relators:

a1 − 2b1 + 2a2 + 2b2 = 0(36)

a1 − 3b1 + 2a2 + b2 = 0,(37)

a1 − 4b1 + 2a2 = 0,(38)

b1 + b2 = 0,(39)

where (38) and (39) generate them all. Similarly, the abelianized relators we get
from x′1, x

′
2, x
′
3, x
′
4 in the P ′1 factor are generated by

a2 − 4b2 + 2a3 = 0,(40)

b2 + b3 = 0,(41)

and those we get from x′′1, x
′′
2, x

′′
3, B2 in the non-conjugated P ′′1 are generated by

a1 − 4b1 + 2a2 + 2a3 = 0,

b1 + b2 = 0 .
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By the Picard-Lefschetz formula, conjugating P ′′1 with φ = t−m−10b1
tz yields the

following additional relators:

a1 + (m+ 6)b1 − 2b2 = 0,(42)

b1 + a2 + 2 b2 + a3 = 0 .(43)

Note that, taking an auxiliary orientation on the twisting curve z, here we have
[z] = a2 + b2 + a3 in homology.

We can replace the two relations (39) and (41) with b2 = −b1 and b3 = b1. Then
(40) can be changed to a2 = −4b1 − 2a3, and in turn (38) can be changed to
a1 = 12b1 + 4a3. As we express all the other generators in terms of a3 and b1, (43)
becomes a3 = −5 b1. Finally, expressing all the generators in terms of b1, the re-
maining relation (42) now reads as mb1 = 0. We conclude that

π1(X0,m) = Z /mZ
as claimed. When m = ±1, we get a trivial group, so in particular, X0 = X0,1 is
simply-connected. Since we have e(X0) = 9 and σ(X0) = −5, by Freedman [34], X0

is homeomorphic to CP2# 6CP2, but not diffeomorphic to it by Theorem 3.

4.5. The theorem and ancillary remarks.

Combining the results of the previous four subsections, we have:

Theorem 7. {(Xi,φ, fi,φ)} are symplectic genus–3 Lefschetz pencils whose total
spaces have χh(Xi,φ) = 1 and c21(Xi,φ) = 3 − i, and they include exotic rational

surfaces CP2#(6 + i)CP2 as well as infinitely many symplectic 4–manifolds which
are not homotopy equivalent to any complex surface, for each i = 0, 1, 2, 3.

The additional claim regarding the examples which are not homotopy equivalent
to any complex surface follows from standard arguments: The family of symplec-
tic 4–manifolds {Xi,φ} contains {Xi,m} we studied in detail, and the fundamental
groups of the latter family realize any (Z /m1 Z) ⊕ (Z /m2 Z) for i = 1, 3, and any
Z /mZ, for i = 0, 2. For i = 1, 3, we get infinitely many examples with b1(Xi,m) = 1
(and b+(Xi,m) > 0) by setting m1 = 0 and varying m2. These cannot be homotopy
equivalent to any complex surface; see e.g. [9][Lemma 2]. For i = 0, 2, we have
κ(Xi,m) = 2. However, there are only finitely many deformation classes of compact
complex surfaces of general type with the same χh and c21 invariants [39], so all but
finitely many of these Xi,m cannot have the homotopy type of a complex surface.

Remark 8. We claim that Xi,φ are either minimal or at most once blow-up of
a minimal symplectic 4–manifold. This follows from the following more general
observation (cf. Remark 4): For any pencil (X, f), where X is not rational or ruled,
the collection of all exceptional classes in the corresponding Lefschetz fibration

(X̃, f̃) can be represented by disjoint multisections Sj, each one of which intersects
the regular fiber F positively. By [65, Theorem 5-12], κ(X) = 2 and g ≥ 3 implies
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that (
∑
Sj) ·F ≤ 2g−4, which in turn means X can have at most 2g−4 exceptional

classes. Note that if X3,φ is not minimal, then κ(X3,φ) = 2, like the other Xi,φ, for
i = 0, 1, 2. Now for every i = 0, 1, 2, 3, since the genus–3 pencil (Xi,φ, fi,φ) already
has one base point (yielding an exceptional class in the corresponding fibration),
there can be at most one more exceptional class, proving our claim.

Remark 9. We suspect that the smallest exotic rational surface one can get via
genus–3 pencils has c21 = 3 or 4. and our example (X0, f0) might very well be
optimal. Our subsequent work in [12] shows that one can already get sharper
results with pencils of genus g = 4 or 5, which is in part due to having room for
more base points, since the number of base points b ≤ 2g − 4 per the previous
remarks. It is also worth noting that no exotic rational surface admits a pencil of
genus g ≤ 2. The total space of any genus g ≤ 1 pencil is a rational surface, and
that of any genus–2 pencil has κ ≥ 1 by Lemma 2 and Proposition 1. Moreover, by
[65, Theorem 5-5(iii)], a genus–2 pencil with κ = 1 should have only one reducible
fiber, which is not possible when the total space has Euler characteristic smaller
than 14 by [15, Lemmas 4 and 5]. Hence, the smallest fiber genera for pencils on
minimal exotic rational surfaces is g = 3. In contrast, there exist genus–2 Lefschetz
fibrations on minimal exotic rational surfaces with c21 = 0, 1, 2, and in fact for no
other c21 [15].

Remark 10. By the work of Siebert and Tian [66], the hyperellipticity of our
genus–3 pencil (X0, f0) implies that the exotic rational surface X0 with c21 = 3 is
the blow-down of a symplectic double cover of a rational ruled surface. The exotic
rational surfaces we built in [15] with c21 = 0, 1, 2 via hyperelliptic genus–2 Lefschetz
fibrations have the same property. In particular, all these exotic rational surfaces
admit symplectic involutions.

Remark 11. There are many prior constructions of Kähler surfaces and symplectic
4–manifolds in the homeomorphism classes of the rational surfaces in Theorem 7.
The first examples with c21 = 0 and 1 were the Dolgachev surfaces and the Barlow
surface, as shown by Donaldson [20] and Kotschick [52], respectively, in the late
1980s. The first examples with c21 = 2 and 3 were obtained around 2005 via gen-
eralized rational blowdowns by J. Park [63] and Stipsicz–Szabó [70], respectively.
Infinitely many distinct smooth structures in these homeomorphism classes were
constructed using logarithmic transforms, knot surgeries and Luttinger surgeries;
see e.g. [29, 36, 71, 31, 1, 2, 3] (all of which are indeed instances of surgeries along
tori [17].) However, it remains an open question whether there are two distinct
minimal symplectic 4–manifolds homeomorphic but not diffeomorphic to the same
rational surface with c21 < 9; see [69][Problem 11]. As observed by Stipsicz and
Szabó, Seiberg-Witten invariants cannot distinguish these symplectic 4–manifolds
[70][Corollary 4.4]. It is thus desirable to have examples with more structure like
ours, in hope of addressing this intriguing question.
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Remark 12. It follows from the works of Donaldson [21] and Gompf [40] that every
finitely presented group is the fundamental group of a symplectic Lefschetz pencil;
also see [5, 51, 44] for direct constructions. One can thus define an invariant mg

of finitely presented groups, where for any such G, mg(G) is the smallest g among
all the genus–g pencils with π1 = G. Well-known examples of genus g = 0, 1, 2
pencils show that for the groups G = 1,Z2 and Z2, we have mg = 0, 2, 2, realized
by pencils on CP2, the Enriques surface, and T 2 × S2, respectively. We conjecture
that mg(G) = 3 for all the other G ∼= (Z /m1 Z)⊕ (Z /m2 Z), which are realized by
our genus–3 pencils (Xi,m, fi,m), when i = 0, 1, 2.

5. Symplectic Calabi-Yau surfaces with b1 > 0 via genus–3 pencils

In this section we will give a new construction of an infinite family of symplectic
Calabi-Yau surfaces with b1 > 0 in all possible rational homology classes allowed
by the rational homology classification of symplectic Calabi-Yaus [53, 8]. These
examples will come from our construction of new positive factorizations of boundary
multi-twists in Mod(Σ4

3) corresponding to symplectic genus–3 Lefschetz pencils.

5.1. Breeding symplectic Calabi-Yau pencils.

The positive factorization for Matsumoto’s genus–2 Lefschetz fibration has the
following further lift to Mod(Σ4

2), which was obtained by Hamada in [42]:

tB0,1tB1,1tB2,1tC1 tB0,2tB1,2tB2,2tC2 = tδ1tδ2tδ3tδ4 ,(44)

where δi are boundary parallel curves, and Bj,i, Ci are as shown on the right-hand
side of Figure 6. This relation will be the main building block in our construction.

After Hurwitz moves, we can rewrite the relation (44) as

tB0,1tB1,1tB2,1 tA0,2tA1,2tA2,2tC1tC2t
−1
δ1
t−1δ2 = tδ3tδ4 ,

where each Aj,2 = tC1(Bj,2) for j = 0, 1, 2. Note that if we cap off the two boundary
components δ3 and δ4, the curves Bj,i descend to the curves Bj and Ci to C given
on the left-hand side of Figure 6, for each j = 0, 1, 2 and i = 1, 2.

C1 C2

C ′
2 C ′

1

∂1

∂2

∂3

∂4

Figure 5. The curves involved in our embeddings of ∂Σ2
4 into ∂Σ4

3.
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B2

B0

B1

C

A0

A1

A2

C1 C2

B0,1

B0,2

B1,1

B1,2

B2,1

B2,2

δ1 δ2

δ3

δ4

Figure 6. The curves Bj , C,Bj,i, Ci in Hamada’s lifts. On the left are
the curves of the positive factorization in Mod(Σ2

2), along with the curves
Aj we got after the Hurwitz moves. On the right are the curves of the
further lift in Mod(Σ4

2).
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Consider the embedding of Σ4
2 into Σ4

3 obtained by attaching a Σ4
0 along two of

the boundary components of Σ4
2. We choose an embedding of Σ4

2 such that we map

δ1 7→ C ′2 , δ2 7→ C ′1 , δ3 7→ ∂2 , δ4 7→ ∂1 ,

where Ci, C
′
i are as shown in Figure 5. We then map the interior of Σ4

2 so that
the curves Bj,1 and Aj,2 all map to the curves Bj and Aj in Figure 7 when the
boundary components ∂1, . . . , ∂4 are capped off.4 Thus, the following relation holds
in Mod(Σ4

3):

tB0,1tB1,1tB2,1 tA0,2tA1,2tA2,2tC1tC2t
−1
C′

2
t−1C′

1
= t∂1t∂2 ,(45)

which we can rewrite as P tC1tC2t
−1
C′

2
t−1C′

1
= tδ1tδ2 , for P = tB0,1tB1,1tB2,1 tA0,2tA1,2tA2,2 .

A similar embedding of Σ4
2 into Σ4

3 can be given by mapping

δ1 7→ C2 , δ2 7→ C1 , δ3 7→ ∂3 , δ4 7→ ∂4 ,

where the interior is mapped in a similar fashion as before, so we get the curves B′j
and A′j in Figure 7 when the boundary components ∂1, . . . , ∂4 are capped off. Note
that this second embedding can be obtained from the first one by a rotation of the
surface Σ4

3 in Figure 5. So we get another relation in Mod(Σ4
3):

tB′
0,1
tB′

1,1
tB′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
tC′

1
tC′

2
t−1C2

t−1C1
= t∂3t∂4 ,(46)

which we can rewrite as P ′ tC′
1
tC′

2
t−1C2

t−1C1
= tδ3tδ4 , for P ′ = tB′

0,1
tB′

1,1
tB′

2,1
tA′

0,2
tA′

1,2
tA′

2,2
.

Now, let φ be any mapping class in Mod(Σ4
3) which fixes the set S := {C1, C2, C

′
1, C

′
2}

point-wise, i.e. φ ∈ Mod(Σ4
3, S). Then the product of P φ and P ′ yield

P φP ′ = P φ tC1tC2t
−1
C′

2
t−1C′

1
P ′tC′

1
tC′

2
t−1C2

t−1C1
= (P tC1tC2t

−1
C′

2
t−1C′

1
)φ P ′tC′

1
tC′

2
t−1C2

t−1C1
= ∆ ,

where ∆ = t∂1t∂2t∂3t∂4 is the boundary multi-twist. Here, in the first equality we
used the commutativity of disjoint Dehn twists tC1 , tC2 , tC′

1
, tC′

2
and that they all

commute with P and P ′. The second equality holds since φ commutes with the
Dehn twists along C1, C2, C

′
1 and C ′2.

Therefore Wφ = P φP ′ is a positive factorization of the boundary multi-twist

∆ = t∂1t∂2t∂3t∂4 in Mod(Σ4
3) for any φ as above. Under the boundary capping ho-

momorphism Mod(Σ4
3)→ Mod(Σ3) this maps to a positive factorization

(tB0tB1tB2tA0tA1tA2)
ψ tB′

0
tB′

1
tB′

2
tA′

0
tA′

1
tA′

2
= 1(47)

where ψ is the image of the mapping class φ under this homomorphism.

Let (Xφ, fφ) denote the symplectic genus-3 Lefschetz pencil corresponding to the
positive factorizationWφ. We claim that eachXφ is a symplectic Calabi-Yau surface.

4At the end of our construction, the four boundary components of Σ4
3 will correspond to disk

neighborhoods of the four base points of our genus–3 pencils, so knowing the isotopy classes of
these Dehn twist curves after we cap off all ∂i will be enough for our π1 and H1 calculations.
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The Euler characteristic of Xφ is easily calculated as

e(Xφ) = 4− 4g + `− b = 4− 4 · 3 + 12− 4 = 0 ,

where g and b are the genus and the number of base points of the pencil, and ` is
the number of critical points, which is equal to the number of Dehn twists in the
positive factorization Wφ.

As we have an explicit positive factorization (47) for the pencil (Xφ, fφ), the
signature of Xφ can be once again easily calculated using the work of Endo–Nagami
in [25]. The signature of the relation (44) we used as our main building block, which
corresponds to a pencil on a minimal ruled surface, is zero, and so is the signature
of any embedding of this relation into a higher genus surface. Since Hurwitz moves,
conjugations and cancellations of positive–negative Dehn twist pairs have no effect
on the signature, the signature of the final relation (47) is also zero. Therefore
σ(Xφ) = 0.

The only rational or ruled surfaces that have the same Euler characteristic and
signature as Xφ are T 2×S2 and T 2 ∼×S2. However, by Lemma 5 they do not admit
pencils with b = 2g− 2 base points. Hence, we can apply Proposition 1 to conclude
that κ(Xφ) = 0. Since Xφ clearly does not have the same rational homology as
the K3 surface or the Enriques surface, we can already tell that it is a symplectic
Calabi-Yau surface with b1 > 0.

5.2. Homeomorphism and homology types.

We will first calculate the fundamental group of Xφ in the extremal case: when φ
is the identity and b1(Xφ) = 4. We will show that the 4–manifold we simply denote
by X in this case has π1(X) = H1(X) ∼= Z4, and we will in fact conclude that X
is homeomorphic to the 4–torus. After this detailed calculation, we will calculate
H1(Xφ) for a certain family of φ ∈ Mod(Σ4

3, S), where S = {C1, C2, C
′
1, C

′
2}, to cover

all rational homology types of symplectic Calabi-Yau surfaces with b1 > 0. For any
choice of φ, one can easily derive a presentation for π1(Xφ) from that of π1(X),
which we will leave to the reader.

Let (X̃, f̃) be the Lefschetz fibration we obtain by blowing-up the base points of
the pencil (X, f). Let {aj, bj} be the standard generators of π1(Σg) as shown in

Figure 4. Once again, we have a finite presentation for π1(X̃) of the form

〈 a1, b1, a2, b2, a3, b3 | [a1, b1][a2, b2][a3, b3], R1, . . . , R12 〉 ,

where each {Rk}12k=1 is a relation obtained by expressing the Dehn twist curves in
the positive factorization (47) in the basis {aj, bj}3j=1.
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A1

A0

B2

B1

B0

C

A2

C ′

B′
0

A′
1

A′
0

B′
2

B′
1

A′
2

Figure 7. The curves Bj , Aj , B
′
j , A

′
j of the genus–3 pencil (X, f). On

the left are the curves coming from the factorization P and on the right are
those coming from P ′, which correspond to the two different embeddings of
the factorization in Mod(Σ2

2) into Mod(Σ3). (Dotted lines are the identified
images of δ1 and δ2 under these two embeddings.)
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So we have the following relations induced by B0, B1, B2, A0, A1, A2, B
′
0, B

′
1,

B′2, A
′
0, A

′
1, A

′
2 (see Figure 7), in the same order:

a1a3 = 1,(48)

a1b̄1a2b2ā2a3b̄3 = 1,(49)

b̄1a2b2ā2b̄3 = 1,(50)

a1[b3, a3] b2a3b̄2 [a3, b3] = 1,(51)

a3b̄3b̄2[a3, b3] a
2
1b̄1ā1[b3, a3] b2[b3, a3] b2 = 1,(52)

a1b̄1ā1[b3, a3] b2[b3, a3] b2b̄3b̄2[a3, b3] = 1,(53)

ā2a1a2a3 = 1,(54)

a1b̄1a2a
2
3 b̄3ā3b2ā2 = 1,(55)

b1a2b̄2a3b3ā3ā2 = 1,(56)

a1a2b̄2a3b2ā2 = 1,(57)

a1b̄1a2b̄2a
2
3 b̄3ā3b

2
2 ā2 = 1,(58)

b̄1a2b̄2a3b̄3ā3b
2
2 ā2 = 1.(59)

First observe that, when abelianized, the relations coming from each triple
{B0, B1, B2}, {A0, A1, A2}, {B′0, B′1, B′2}, {A′0, A′1, A′2} yield the same three relations

a1 + a3 = 0,

a1 − b1 + b2 + a3 − b3 = 0,

b1 − b2 + b3 = 0,

where we identified the abelianized images of the π1 generators with the same letters.
Any two of these relations imply the third. Since a1 = −a3 and b1 = b2 − b3, we
can eliminate a1 and b1 (and these relations) from the presentation, and we get free
abelian group of rank 4, generated by a2, b2, a3 and b3.

Now, going back to the presentation we had for π1(X̃), we see that it is also gen-
erated by a2, b2, a3, b3, for a1 = ā3 by (48) and b1 = a2b2ā2b̄3 by (50). Therefore, to

conclude that π1(X̃) = Z4, it suffices to show that a2, b2, a3 and b3 all commute with
each other, which is what do next: Replacing a1 with ā3 in (54) gives [a2, a3] = 1.

From (50) we have b̄1a2b2ā2 = b3. Substituting this in (49), and replacing a1 with
ā3, we get [a3, b3] = 1. With a1 = ā3 and [a3, b3] = 1, the relation (51) simplifies

to [b2, a3] = 1. So a3 commutes with a2, b2 and b3, and therefore, with everything.

Since a1 = ā3, the surface relation [a1, b1][a2, b2][a3, b3] = 1 becomes [a2, b2] = 1.

Recall that b1 = a2b2ā2b̄3, which now becomes b1 = b2b̄3. Substituting a1 = ā3
and b1 = b2b̄3 into (53), and then simplifying it using all the commutativity rela-
tions we have so far, we get [b2, b3] = 1. Finally, commuting and canceling the a1
and a3 terms in the relation (55) we get b̄1a2b̄3b2ā2 = 1, which, we can rewrite as
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b3b̄2a2b̄3b2ā2 = 1 by substituting b1 = b2b̄3. Since b2 commutes with both a2 and b3,
we can simplify the last relation to get [a2, b3] = 1.

Hence π1(X) = π1(X̃) = Z4, generated by a2, b2, a3 and b3.

Since π1(X) = Z4 is a virtually poly-Z group, the Borel conjecture holds in this
case by the work of Farrell and Jones [27]. As observed by Friedl and Vidussi,
this implies that a symplectic Calabi Yau surface with π1 = Z4 is unique up to
homeomorphism [35]. So X is homeomorphic to the 4–torus.

Lastly, we will show that for suitable choices of φ, we can get Xφ realizing all
possible rational homology types of symplectic Calabi-Yau surfaces with b1 > 0,
which are precisely the rational homology types of torus bundles over tori [55].
In fact, we will get an infinite family realizing all integral homology types of torus
bundles over tori. Because the Euler characteristic and the signature are fixed (both
zero), the first homology groups determine all the others. Therefore, it will suffice
to show that we can get Xφ with H1(Xφ) = Z2 ⊕ (Z /m1 Z) ⊕ (Z /m2 Z) for any
given m1,m2 ∈ N.

Let us take φ = t−m1
b1

tm2
a3

, where b1 and a3 are as in Figure 4. Note that b1
and a3 are disjoint from C1, C2, C

′
1, C

′
2, so φ fixes this set of curves point-wise. For

m = (m1,m2) any pair of non-negative integers, let us denote the genus–3 pencil we
obtain this way by (Xm, fm) and its positive factorization by Wm = P φP ′, where

φ = t−m1
b1

tm2
a3

. Note that X(0,0) = X.

Recall that, every triple of vanishing cycles {B0, B1, B2}, {A0, A1, A2}, {B′0, B′1, B′2},
{A′0, A′1, A′2} yield the two linearly independent relations

a1 + a3 = 0,(60)

b1 − b2 + b3 = 0 .(61)

There are two conclusions to draw: First, the Dehn twist curves coming from the
non-conjugated factor P ′ induce exactly these relations in H1(Xm). Second, the van-
ishing cycles coming from the conjugated factor P φ induce the following relations,
which we can easily derive using the Picard-Lefschetz formula:

a1 +m1b1 + a3 = 0,(62)

b1 − b2 +m2a3 + b3 = 0 .(63)

We can now easily see that (60) and (62) together imply m1b1 = 0, whereas (61)
and (63) imply m2a3 = 0. From the relations a3 = −a1 and b3 = b2 − b1, we then
conclude that H1(Xm) is generated by a1, b1, a2, b2 with only two relations: m1b1 = 0
and m2a1 = 0. Hence, H1(Xm) = Z2 ⊕ (Z /m1 Z)⊕ (Z /m2 Z), as claimed.

Note that when m1 = m2 = ±1, we get symplectic Calabi-Yau surfaces with the
same integral homology type as T 2 × S2, but obviously not diffeomorphic to it, as
they have different Kodaira dimensions.
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5.3. The theorem and final remarks.

For {(Xφ, fφ)} symplectic genus–3 pencils prescribed by the positive factorizations
Wφ, for φ ∈ Mod(Σ4

3, S), we have now proved that:

Theorem 13. {(Xφ, fφ)} are symplectic genus–3 Lefschetz pencils whose total spaces
are symplectic Calabi-Yau surfaces that realize all integral homology types of torus
bundles over tori, and they include a symplectic Calabi-Yau surface homeomorphic
to the 4–torus and fake symplectic T 2 × S2s.

We finish with a few observations and comparisons regarding our examples.

Remark 14. The most curious question about our examples is whether every Xφ

is a torus bundle over a torus, as they are commonly conjectured to exhaust all
the diffeomorphism types of symplectic Calabi-Yau surfaces with b1 > 0. After the
first version of our paper was publicized, Hamada and Hayano succeeded to prove
that our symplectic Calabi-Yau surface that is homeomorphic to the 4–torus [43],
is in fact diffeomorphic to it, by comparing the pencil we described on it with a
pencil described by Ivan Smith on the standard 4–torus [68] (more on this below).
This is so far the only example we know to be standard within this infinite family
of examples.5 If for any conjugation φ 6= 1, it turns out that π1(Xφ) is not a
4–dimensional solvmanifold group [48, 35], this would imply that Xφ is not a torus
bundle over a torus, and is a new symplectic Calabi-Yau surface. As our arguments
in the proof of Theorem 13 show, more generally, if any partial conjugation along
any Hurwitz equivalent factorization to the positive factorization Wφ results in a
pencil with a fundamental group which is not a solvmanifold group, we can arrive
at a similar conclusion. So far, a handful of examples we examined seem to have the
same group theoretic properties as their infrasolvmanifold counter-parts; e.g. they
are poly-Z of Hirsch length 4. In particular, we don’t know at this point if any of
the fake symplectic T 2 × S2 we get has π1 = Z2 so that it would be exotic.

Remark 15. In [68], Ivan Smith constructed genus–3 pencils on torus bundles
over tori admitting sections (not all do), by generalizing the algebraic geometric
construction of holomorphic genus–3 pencils on abelian surfaces. It is natural to
ask whether our examples overlap with Smith’s. As Hamada and Hayano showed
in [43], this is the case for our 4–torus example, but we don’t know much about
it beyond that. There are however reasons to think that our family of genus–3
pencils (Xφ, fφ) is at least larger than Smith’s examples. For comparison, note that
any torus bundle over a torus with a section would admit a second disjoint section
as well; for any section of a surface bundle over a torus has self-intersection zero
[16] and can be pushed-off of itself. So the family of genus–3 pencils of Smith are

5It might be possible to use the recent works of W. Chen in [18, 19] to conclude that some
other Xφ are also standard by finding finite symplectic symmetries on them. In the special case
of trivial φ, one can in fact see that the monodromy of the pencil (X, f) with b1(X) = 4 has a
Z2–symmetry under cyclic permutation, which gives rise to a symplectic involution on X.
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determined by a pair φ1, φ2 ∈ Mod(Σ2
1) subject to the relation [φ1, φ2] = 1. On the

other hand, our family of genus–3 pencils are parameterized by φ ∈ Mod(Σ4
3, S)},

where S := {C1, C2, C
′
1, C

′
2}, which has a proper subgroup that consists of mapping

classes which fix each one of the curves C1, C2, C
′
1, C

′
2. Any φ in the latter stabilizer

group has disjoint support in two copies of Σ2
1 embedded in Σ4

3 (the left and the
right sides of the surface in Figure 5). So a subset of our family of examples are also
parameterized by φ1, φ2 ∈ Mod(Σ2

1), but with no relation to each other whatsoever.

Remark 16. The subfamily of pencils {(Xm, fm) |m = (m1,m2) ∈ N2} we studied
in the proof of Theorem 13 have the following property: they can all be obtained
from the 4–torus pencil (X, f) through fibered Luttinger surgeries [6, 10]. To see
this, first observe that for φ = t−m1

b1
tm2
a3

, we have the positive factorizations

Wm = (t−m1
b1

tm2
a3
P t−m2

a3
tm1
b1

)P ′ = (t−1b1 · · · t
−1
b1
ta3 · · · ta3 P t−1a3 · · · t−1a3 tb1 · · · )tb1 P ′ .

which are obtained by a sequence of partial conjugations by tb1 and ta3 . Since
b1 and a3 are disjoint from C1, C

′
1, C2, C

′
2, they are stabilized by P , which, as a

mapping class, equals to t−1C1
t−1C2

tC′
1
tC′

2
. So each conjugation by a factor of t±1b1 or t±1a3

amounts to performing a Luttinger surgery along a Lagrangian torus swept off by
b1 or a3 on the regular fibers, over a loop on the base [6, 10]. One can easily see how
this observation generalizes to more general conjugations (but perhaps requiring
Luttinger surgeries along Lagrangian Klein bottles). With this in mind, we see that
if {(Xφ, fφ)} contains all the torus bundles over tori, then one would immediately get
a proof of an improved version of a conjecture by C.-I. Ho and T.-J. Li: that every
torus bundle over a torus admits a symplectic structure so that it is obtained via
Luttinger surgeries along tori from the 4–torus equipped with the standard product
symplectic structure [47, Conjecture 4.9], or Klein bottles, we add.

References

[1] A. Akhmedov, R. I. Baykur and D. Park, Constructing infinitely many smooth structures
on small 4-manifolds, J. Topol. 1 (2008), no. 2, 409—428.

[2] A. Akhmedov and B. D. Park, Exotic smooth structures on small 4–manifolds, Invent.
Math. 173 (2008), no. 1, 209–223.

[3] A. Akhmedov and B. D. Park, Exotic smooth structures on small 4-manifolds with odd
signatures, Invent. Math. 181 (2010), no. 3, 577—603.
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