UMass Amherst Algebra Advanced Exam

Wednesday 1/18/17, 10:00AM–1:00PM, LGRT 219.

Instructions: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory and representation theory

Q1. Let G be a non-abelian group of order 28 containing an element of order 4. Describe G in terms of generators and relations.

Q2. Determine the character table of the alternating group A_4.

Q3. Let G be a finite group of order n with m conjugacy classes C_1, \ldots, C_m. For every $i = 1, \ldots, m$, let l_i be the order of the centralizer $C_G(x_i)$ for $x_i \in C_i$. We can assume that $l_1 \geq \ldots \geq l_m$.

(a) Show that $1 = \frac{1}{l_1} + \ldots + \frac{1}{l_m}$.

(b) Show that $l_m \leq m$, $l_{m-1} \leq 2(m - 1)$, and in fact, for every p, $l_p \leq q_p$ for some q_p which depends only on m (and not on n).

(c) Show that for every $m \geq 1$ there exists $n \geq 1$ such that every finite group of order larger than n contains more than m conjugacy classes.

2. Commutative Algebra

Q4.

(a) Let $R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Prove that R is a unique factorization domain.

(b) Let $S = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Prove that S is not a unique factorization domain.

Q5.

(a) Let $\mathfrak{m} \subset \mathbb{C}[x, y]$ be some maximal ideal in the polynomial ring in two variables over complex numbers. Show that

$$\dim_{\mathbb{C}}(\mathfrak{m}^n/\mathfrak{m}^{n+1}) = n + 1$$

for every $n \geq 1$. Here \mathfrak{m}^n is the n-th power of the ideal \mathfrak{m}.

(b) Let $R = \mathbb{C}[x, y, z]/(xy - z^3)$, the quotient-ring. Show that R is not isomorphic to $\mathbb{C}[x, y]$.

1
Q6. Let \(p \) be a prime ideal of a Noetherian commutative ring \(R \). Let \(M \) and \(N \) be finitely generated \(R \)-modules. Construct a natural isomorphism of the following \(R_p \)-modules:

\[
\text{Hom}_{R_p}(M_p, N_p) \simeq (\text{Hom}_R(M, N))_p
\]

3. Field theory and Galois theory

Q7. Let \(f \in \mathbb{Q}[x] \) be an irreducible cubic polynomial and suppose that \(f \) has a root \(\alpha \in \mathbb{C} \setminus \mathbb{R} \). Let \(K \) be the splitting field of \(f \). Determine the Galois group of \(K \) over \(\mathbb{Q} \).

Q8. Let \(K/k \) be an algebraic extension. Let \(\alpha, \beta \in K \) be different roots of the same irreducible polynomial \(f(x) \in k[x] \) of degree \(n \).

(a) Show that \(\deg_k(\alpha + \beta) \leq \frac{n(n-1)}{2} \). Recall that the degree of an element of the field extension is, by definition, the degree of its minimal polynomial.

(b) For every \(n \geq 1 \), show that there exist fields \(K/k \) and elements \(\alpha, \beta \in K \) as above such that \(\deg_k(\alpha + \beta) = \frac{n(n-1)}{2} \).

Q9.

(a) Let \(p \) be an arbitrary prime number. The Dirichlet theorem on primes in arithmetic progressions implies that there exists a prime number \(q \) such that \(q \equiv 1 \mod p \). Use this to show existence of a Galois extension \(K/\mathbb{Q} \) with Galois group of order \(p \).

(b) Find explicitly an algebraic integer \(\alpha \in \mathbb{C} \) such that the splitting field of its minimal polynomial over \(\mathbb{Q} \) has degree 5.