Department of Mathematics and Statistics University of Massachusetts Basic Exam: Topology January 14, 2015

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

- (1) Let X in \mathbb{R}^m be a union of convex sets X_i . Show that if $X_i \cap X_j \cap X_k \neq \emptyset$ for all triples i, j, k, then X is connected and simply-connected.
- (2) Let $f: S^1 \to (0,1)$ be a continuous map.
 - (a) Show that f cannot be surjective.
 - (b) Show that there exists $x \in S^1$ such that f(x) = f(-x).
- (3) Let X be the space obtained from \mathbb{R} by identifying all integer points \mathbb{Z} to a single point. Show that with the quotient topology the space X is Hausdorff, connected, and non-compact.
- (4) Let $\{f_{\alpha}\}_{\alpha \in A}$ be a family of continuous functions $X \to [0, 1]$ with the property that for any $x \in X$ and any closed set $A \subset X$ with $x \notin A$, there exists an $\alpha \in A$ such that f(x) = 0 and $f(A) = \{1\}$. Show that

$$F: X \to [0,1]^A, \quad F(x) = (f_\alpha(x))_{\alpha \in A}$$

is an embedding, i.e. it is a homeomorphism onto its image.

- (5) Let X be a topological space, and define a relation ~ on X by declaring that x ~ y if and only if there is a connected subset of X that contains both x and y.
 - (a) Show that this relation is an equivalence relation, and that the equivalence classes are closed and connected.
 - (b) Find the equivalence classes when X is the real line equipped with the standard topology.
 - (c) Find the equivalence classes when X is the real line equipped with the topology with basis the collection of all semi-infinite intervals

$$I(a) = \{ x \mid a < x \}$$

- (6) (a) Define the one-point compactification of a space.
 - (b) Let X be a connected locally compact space. Prove that X is not homeomorphic to its one-point compactification.
- (7) Let X be the set \mathbb{Z} of integers endowed with a topology in which a subset $U \subseteq X$ is open if and only if either X U is finite or $0 \notin U$. (X is called the *countable Fort space*.)
 - (a) Check that this really defines a topology on X.
 - (b) Prove that X is compact.
 - (c) Is X connected? Prove your answer.