NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, January 16, 2013

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

- 1. Let \mathcal{B} be the Borel σ -algebra of subsets of \mathbb{R} and let m be Lebesgue measure.
 - (a) For $A \in \mathcal{B}$ and $c \in \mathbb{R}$ let $A + c = \{x \in \mathbb{R} : x = a + c \text{ for some } a \in A\}$. Prove that $A + c \in \mathcal{B}$.

Hint: Consider the set $\mathcal{D} = \{ A \in \mathcal{B} : A + c \in \mathcal{B} \text{ for all } c \in \mathbb{R} \}.$

(b) Prove that for any $A \in \mathcal{B}$ and $c \in \mathbb{R}$ we have

$$m(A+c) = m(A).$$

(c) Let f be an integrable function. Prove that for any $A \in \mathcal{B}$

$$\int_A f(x+c)dm(x) = \int_{A+c} f(x)dm(x).$$

2. Let (X, \mathcal{M}, μ) be a measure space and $f: X \to [0, \infty)$ a non-negative measurable function. For $k \in \mathbb{Z}$ consider the level sets

$$F_k = \{x \in X : 2^k < f(x) \le 2^{k+1}\}, \qquad E_k = \{x \in X : 2^k < f(x)\}.$$

Show that the following are equivalent.

- (a) $f \in L^1(\mu)$.
- (b) $\sum_{k=-\infty}^{\infty} 2^k \mu(F_k) < \infty.$
- (c) $\sum_{k=-\infty}^{\infty} 2^k \mu(E_k) < \infty.$

- 3. Let (X,\mathcal{M},μ) be a measure space, $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ sequences of measurable functions, and f and g measurable functions. Assume that $f_n\to f$ in measure and $g_n\to g$ in measure.
 - (a) Prove that for any $a, b \in \mathbb{R}$, $af_n + bg_n \to af + bg$ in measure.
 - (b) Prove that $|f_n| \to |f|$ in measure.
 - (c) Assume that there exists $M<\infty$ such that $|f_n|\leq M$ a.e, $|g_n|< M$ a.e. for all n and $|f|\leq M$ a.e, $|g|\leq M$ a.e. Prove that $f_ng_n\to fg$ in measure.

- 4. Let [a, b] be a finite interval and $f : [a, b] \to \mathbb{R}$.
 - (a) Give the definition of the concept that "f is of bounded variation."
 - (b) Suppose that f is continuous on the closed interval [a,b], differentiable on the open interval (a,b), and that $\sup_{x\in(a,b)}|f'(x)|<\infty$. Prove that f is of bounded variation.
 - (c) Prove that the function

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } 0 < x \le 1/\pi \\ 0 & \text{if } x = 0 \end{cases}$$

is of bounded variation.

(d) Prove that the function

$$f(x) = \begin{cases} x \sin(1/x) & \text{if } 0 < x \le 1/\pi \\ 0 & \text{if } x = 0 \end{cases}$$

is not of bounded variation.

- 5. Consider the measurable space $(\mathbb{N}, \mathcal{P})$, where \mathcal{P} is the σ -algebra of all subsets of \mathbb{N} . Let μ and λ two measures on $(\mathbb{N}, \mathcal{P})$.
 - (a) Find, and describe explicitly, two subsets of \mathbb{N} , I_1 and I_2 , such that the following three properties hold:
 - i. The measure λ_1 defined by $\lambda_1(E) \equiv \lambda(E \cap I_1)$ for any $E \in \mathcal{P}$ satisfies $\lambda_1 \ll \mu$.
 - ii. The measure λ_2 defined by $\lambda_2(E) \equiv \lambda(E \cap I_2)$ for any $E \in \mathcal{P}$ satisfies $\lambda_2 \perp \mu$.
 - iii. $\lambda = \lambda_1 + \lambda_2$.
 - (b) Find an explicit formula for a function $h : \mathbb{N} \to \mathbb{R}$ such that, for all $E \in \mathcal{P}$,

$$\lambda_1(E) = \int_E h d\mu.$$

Is h unique?

- 6. Let $1 \le p < q < r \le \infty$ and let $L^p = L^p(X, \mathcal{M}, \mu)$ for some measure space (X, \mathcal{M}, μ) . L^q and L^r are defined similarly.
 - (a) Show that $L^q \subset L^p + L^r$; i.e., any $f \in L^q$ can be written as f = g + h with $g \in L^p$ and $h \in L^r$.
 - (b) Show that $L^p \cap L^r \subset L^q$ and that for any $f \in L^p \cap L^r$, $\|f\|_q \leq \|f\|_p^{\lambda} \|f\|_r^{1-\lambda}$ for a suitable λ .

Hint: Use Hölder's Inequality.

- 7. Let $(X, \|\cdot\|)$ be a Banach space. Suppose that X can be written as the direct sum of two linear subspaces M and N; i.e. $X = M \oplus N$. This means that $x \in X$ can be expressed uniquely as x = y + z where $y \in M$ and $z \in N$.
 - (a) For any $x \in X$ define $||x||' \equiv ||y|| + ||z||$. Prove that $||\cdot||'$ defines a norm on X.
 - (b) Consider the normed vector space $(X, \|\cdot\|')$. Which additional property of the subspaces M and N is needed to ensure that $(X, \|\cdot\|')$ is a Banach space? Prove your answer.

8. (a) Suppose that $f \in L^1([0,1])$, and define for $n \in \mathbb{Z}$

$$c_n = \int_0^1 f(x)e^{-i2\pi nx}dm(x).$$

Prove the Riemann-Lebesgue lemma; i.e., that

$$\lim_{n\to\infty}c_n=0.$$

Hint: Approximate f by a function in L^2 and use Hilbert space theorems.

(b) Suppose that E is a measurable subset of [0,1] and $\{u_n\}_{n\in\mathbb{N}}$ an arbitrary sequence of real numbers. Prove that

$$\lim_{n \to \infty} \int_E \cos^2(nx + u_n) \, dm(x) \, = \, \frac{m(E)}{2} \, .$$

Hint: $\cos^2 a = \frac{1}{2}(1 + \cos(2a)), \ \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$