BASIC EXAM – LINEAR ALGEBRA/ADVANCED CALCULUS UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS JANUARY 2008

- Do 7 of the following 9 problems.
- Passing Standard:
 - For Master's level: 60% with three questions essentially complete (including at least one from each part)
 - For Ph. D. level: 75% with two questions from each part essentially complete.
- Show your work!

Part I. Linear Algebra

- 1. Denote by $D = \frac{d}{dx}$ the differential operator on the set **P** of all real, one-variable polynomials of degree ≤ 3 (including the zero polynomial). It is a fact that **P** is a real vector space and that D is a linear transformation from **P** to itself. Determine the characteristic polynomial and the minimal polynomial of this operator D.
- 2. Let A be a complex $n \times n$ matrix for which $A^3 = A$. Prove that $rank(A) = trace(A^2)$.
- 3. We say that a real, $n \times n$ symmetric matrix A is positive definite if $(A\vec{x}) \cdot \vec{x} > 0$ for all non-zero $\vec{x} \in \mathbf{R}^n$, where \cdot denotes the usual inner product on \mathbf{R}^n .
 - (a) Show that A is positive definite if and only if all of its eigenvalues are positive.
- (b) If A is positive definite, show that there exists another positive definite matrix B such that $A = B^2$.
- 4. For a vector subspace W of \mathbb{R}^n , the orthogonal complement of W is defined by

$$W^{\perp} := \{ \vec{x} \in \mathbf{R}^n : \vec{x} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \},$$

where \cdot denotes the usual inner product on \mathbf{R}^n . Show that $(W^{\perp})^{\perp} = W$ for every subspace W of \mathbf{R}^n .

2

Part II. Advanced Calculus

- 1. Prove directly the following special case of the Arithmetic-Geometric Mean inequality: For any integer $n \geq 1$, if y_1, \ldots, y_n are positive real numbers with product 1, then $y_1 + \cdots + y_n \geq n$.
- 2. For each integer $n \ge 1$, let $f_n(x) = n^2 x^n (1-x)$.
 - (a) Show that this sequence of functions converges *pointwise* on [0, 1].
 - (b) Does this sequence of functions converges uniformly on [0, 1]?

(c) Does
$$\lim_{n\to\infty} \int_0^1 f_n(x) dx \stackrel{?}{=} \int_0^1 \left(\lim_{n\to\infty} f_n(x)\right) dx$$
?

3. Let f(x) be a function which is continuously differentiable on the closed interval [a, b]. If f(x) is not linear, show that there exists a number $c \in (a, b)$ at which

$$|f'(c)| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$

(note: this is *not* the mean-value theorem!)

4. Calculate

$$\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} \, dS,$$

where S is the surface

$$S = \{(x, y, z) : x^2 + y^2 = 1, -1 \le z \le 0\} \cup \{(x, y, z) : x^2 + y^2 \le 1, z = -1\},\$$

oriented by its outward-point normal vector \vec{n} , and

$$\vec{F}(x+\vec{\imath}+y\vec{\jmath}+z\vec{k}) = (y+e^{xz})\vec{\imath} - (x+e^{yz})\vec{\jmath} + (e^{xyz})\vec{k}.$$

5. Suppose f(x) is Riemann-integrable on [0,1] with 0 < f(x) < 1. Show that $\int_0^1 f(x) dx > 0$.