NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Tuesday, January 18, 2005

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.
- In each case compute ∫_X f dµ, where X = {1,2,3,...} = 𝔅 and all subsets of X are measurable.
 (a) f(x) = 1/x and µ is counting measure; i.e., µ(B) equals the number of elements, finite or infinite, in B.

(b) $f(x) = 2^{-x}$ and μ is counting measure; i.e., $\mu(B)$ equals the number of elements, finite or infinite, in B.

- (c) $f(x) = e^x$ and $\mu(B) = 1_B(13)$.
- (d) $f(x) = (x\pi^x)^{-1}$ and $\mu(\{k\}) = k(\pi/2)^k$ for all $k \in X$.
- 2. Let $\{f_i, j \in \mathbb{N}\}$ be a sequence of functions in $L^2[0,1]$ with Fourier coefficients

$$\hat{f}_j(n) = \int_0^1 e^{-2\pi i n x} f_j(x) dx.$$

Assume the following about $\{\hat{f}_j(n)\}$.

(a) There exists a positive sequence in $\ell^2(\mathbb{Z})$, $\{c(n), n \in \mathbb{Z}\}$, such that

$$\sup_{j \in \mathbb{N}} |\hat{f}_j(n)| \le c(n) \text{ for all } n \in \mathbb{Z}.$$

(b) For each fixed $n \in \mathbb{Z}$, $\hat{f}_{\infty}(n) = \lim_{j \to \infty} \hat{f}_j(n)$ exists.

Prove that there exists a function $f \in L^2[0,1]$ such that $f_j \to f$ in $L^2[0,1]$.

- 3. Let C[-1,1] denote the space of bounded continuous functions mapping [-1,1] into \mathbb{R} .
 - (a) Prove that C[-1,1] is a Banach space with norm $||f|| = \sup_{t \in [-1,1]} |f(t)|$.
 - (b) Let T be a bounded linear operator mapping C[-1,1] into \mathbb{R} . Give the definition of the operator norm ||T||.
 - (c) For $f \in C[-1, 1]$ define

$$Sf = \int_{-1}^{1} x^2 f(x) dx$$
 and $Tf = \int_{-1}^{1} x^3 f(x) dx$

(i) Give the numerical values of ||S|| and ||T||.

(ii) Is the supremum in the definition of ||S|| attained? Is the supremum in the definition of ||T|| attained? Explain your answers.

4. The purpose of this problem is to prove that

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\pi/2} \cos^n(x) \, dx = \int_0^\infty \exp[-x^2/2] \, dx.$$

Prove this by combining the limit in part (a) and the steps in part (b).

(a) First show that for any $0 < \delta < \pi/2$

$$\lim_{n \to \infty} \sqrt{n} \int_{\delta}^{\pi/2} \cos^n(x) \, dx = 0.$$

(b) For any $0 < \delta < \pi/2$ and $n \in \mathbb{N}$ the change of variable $y = \sqrt{nx}$ gives

$$\sqrt{n} \int_0^\delta \cos^n(x) \, dx = \int_0^{\delta\sqrt{n}} \cos^n(y/\sqrt{n}) \, dy.$$

Complete the proof of the limit in the first display in this problem by using without proof the inequality

$$1 - \frac{1}{2}x^2 \le \cos(x) \le \exp[-x^2/2]$$
 for $0 \le x \le \pi/2$.

5. Let (X, \mathcal{M}) be a measure space. Let $\{f_n, n \in \mathbb{N}\}$ be a sequence of measurable functions mapping X into \mathbb{R} and let f be a measurable function mapping X into \mathbb{R} .

(a) Define the set

$$A = \{x \in X : \lim_{n \to \infty} f_n(x) = f(x)\}$$

Prove that $A \in \mathcal{M}$.

(b) Define the set

$$B = \{x \in X : \{f_n(x), n \in \mathbb{N}\} \text{ is not a Cauchy sequence}\}.$$

Prove that $B \in \mathcal{M}$.

6. Let $f : \mathbb{R} \to \mathbb{R}$ be a nondecreasing function. It is known that f is differentiable a.e. and that f' is a measurable function. Prove that for any closed bounded interval [a, b]

$$\int_a^b f'(x) \, dx \leq f(b) - f(a).$$

Hints. Work with the function h(x) which equals f(x) for $x \in [a, b]$ and equals f(b) for x > b. Apply Fatou's lemma.

Let (X, M, μ) be a measure space, {f_n, n ∈ IN} a sequence of nonnegative L²(μ)-functions mapping X into [0,∞), and f a nonnegative L²(μ)-function mapping X into [0,∞). Denote the L²(μ)-norm by || · ||. Assume that

 $f_n \to f$ a.e. and $\lim_{n \to \infty} \|f_n\| = \|f\|.$

Prove that $\lim_{n \to \infty} \|f - f_n\| = 0$. (Hint. Expand $\|f - f_n\|^2$.)

8. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces that are **not** σ -finite.

(a) Let A be a set in \mathcal{M} and B a set in \mathcal{N} . For $x \in X$ and $y \in Y$ define the functions $f(x) = 1_A(x)$, $g(y) = 1_B(y)$, and h(x, y) = f(x)g(y). Without using the Fubini-Tonelli Theorem, prove that

$$\int_{X \times Y} h \, d(\mu \times \nu) = \int_X f d\mu \cdot \int_Y g d\nu.$$

(b) Let f be a nonnegative measurable function mapping X into $[0, \infty)$ and g a nonnegative measurable function mapping Y into $[0, \infty)$. For $x \in X$ and $y \in Y$ define h(x, y) = f(x)g(y). Without using the Fubini-Tonelli Theorem, prove that

$$\int_{X \times Y} h \, d(\mu \times \nu) = \int_X f d\mu \cdot \int_Y g d\nu.$$

(c) Explain why in parts (a) and (b) the Fubini-Tonelli Theorem cannot be applied.