Department of Mathematics and Statistics University of Massachusetts Basic Exam: Linear Algebra/Advanced Calculus January 20, 2004

Do 7 of the following 9 problems. Indicate clearly which problems should be graded.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Part I Linear Algebra

- 1. Let V be a finite dimensional vector space over \mathbb{R} , with fixed but *arbitrary* basis $B = \{v_1, \ldots, v_n\}$. Suppose $\langle u, v \rangle$ is an inner product on V: symmetric, bilinear, positive definite. If c_1, \ldots, c_n are arbitrary scalars, prove that there is a unique $v \in V$ for which $\langle v, v_k \rangle = c_k$ for all k.
- 2. Let A be a (real) orthogonal $n \times n$ matrix: $A^{t}A = I$ (where A^{t} denotes the transpose matrix).
 - (a) Prove that $\det A = \pm 1$.
 - (b) Prove that x and Ax have the same length, for all $x \in \mathbb{R}^n$.
 - (c) Prove that the only possible real eigenvalues of A are ± 1 .
 - (d) If n = 3 and det A = 1, prove that 1 is an eigenvalue of A.
- 3. (a) Show that if A is a diagonalizable matrix with non-negative real eigenvalues, then there is a matrix S such that $S^2 = A$.
 - (b) Using the general method from (a), find a matrix whose square is

$$A = \begin{pmatrix} 1 & 0 & 8 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

4. Let \mathcal{M} be the n^2 -dimensional space of $n \times n$ matrices over \mathbb{R} . Let \mathcal{S} resp. \mathcal{K} be the subspace consisting of symmetric matrices A (satisfying $A^t = A$) resp. skew-symmetric matrices A (satisfying $A^t = -A$).

(a) Prove that each $n \times n$ matrix A can be written uniquely as the sum of a symmetric matrix B and a skew-symmetric matrix C. (In other words, \mathcal{M} is the direct sum of \mathcal{S} and \mathcal{K} .)

(b) Compute the dimensions of \mathcal{S} and \mathcal{K} .

Part II Advanced Calculus

1. For the radial vector $\vec{r} = (x, y, z)$ and a suitable region R in \mathbb{R}^3 , show that

$$\iiint\limits_R \frac{dV}{r^2} = \iint\limits_{S=\partial R} \frac{\vec{r}}{r^2} \cdot \vec{dS}$$

for $r = \|\vec{r}\|$.

2. Let S be a smooth surface in \mathbb{R}^3 with (oriented) boundary ∂S . If f and g are C^1 -functions, show that

$$\int_{\partial S} f \, \nabla g \cdot d\vec{s} = \iint_{S} (\nabla f \times \nabla g) \cdot \vec{dS}$$

3. Define a sequence of functions $f_n: [0, \pi] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} \sin(nx) \text{ if } 0 \le x \le \pi/n \\ 0 \text{ otherwise} \end{cases}$$

Determine whether $\{f_n\}$ converges (a) pointwise (b) uniformly.

4. Determine (using just the definitions involved) whether each function is (a) *continuous* at 0, (b) *differentiable* at 0:

$$f(x) = \begin{cases} 1 & \text{if } x = 1/n \text{ for } n = 1, 2, \dots, \\ 0 & \text{otherwise} \end{cases}$$
$$g(x) = \begin{cases} 1/n \text{ if } x = 1/n \text{ for } n = 1, 2, \dots, \\ 0 \text{ otherwise} \end{cases}$$

5. (a) Determine the radius of convergence R and the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot 4^n} x^n$$

(b) If a power series $\sum a_n x^n$ has radius of convergence R > 0 and if 0 < R' < R, prove that the series converges uniformly on [-R', R']. Conclude that $f(x) = \sum a_n x^n$ defines a *continuous* function on (-R, R).