DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - MATHEMATICAL STATISTICS TUESDAY, JANUARY 22, 2002

Do all six problems. All problems are equally weighted. Seventy points are needed to pass at the Ph.D. level.

(1) Let X and Y be independent, non-negative, real-valued random variables. Their respective cumulative distribution functions are F(x) and G(x) and their respective probability densities (with respect to Lebesgue measure) are f(x) > 0 and g(x) > 0. Define $Z = \min(X, Y)$ and

$$I = 0$$
, if $X \ge Y$; $I = 1$, if $X < Y$.

- (a) Derive the joint distribution of (Z, I).
- (b) Verify the following:

$$\frac{-(d/dx)P(Z \ge x, I=1)}{P(Z \ge x)} = \frac{f(x)}{1 - F(x)}.$$

- (2) Let $X_n, n = 1, 2, \dots$, and X be real-valued random variables defined on the same probability space.
 - (a) Give an example in which $X_n \Rightarrow X$ in distribution, but $X_n \not\rightarrow X$ in probability.
 - (b) Suppose $X_n \Rightarrow X$ in distribution and X = c, where c is a deterministic number. Show that $X_n \to c$ in probability.
 - (c) Give an example in which $X_n \Rightarrow X$ in distribution, but

$$\lim_{n \to \infty} E[X_n] \neq E[X].$$

- (d) Let X_1, X_2, \ldots be i.i.d. with mean 1 and finite variance σ^2 . Show that $(1/n) \sum_{i=1}^n X_i X_{i+1}$ converges in probability, and identify the limit.
- (3) Let X and Y be bounded, real-valued random variables on a probability space (Ω, \mathcal{F}, P) . Assume \mathcal{G} is a sub-sigma field of \mathcal{F} . Prove that

$$E[YE[X|\mathcal{G}]] = E[XE[Y|\mathcal{G}]]$$

using the definition of conditional expectation.

- (4) Let X_1, \dots, X_n be a random sample from an exponential distribution with unknown mean θ , i.e., $p(x) = \theta^{-1} \exp(-x/\theta)$, for x > 0 and $\theta > 0$.
 - (a) Find the MLE of the 75th percentile, say q, of the distribution.
 - (b) Determine whether or not this estimator is unbiased.

- (c) Calculate the mean squared error (MSE) of the estimator in terms of n and θ . Does $MSE \to 0$ as $n \to \infty$?
- (5) Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively, where all parameters are unknown. Let \overline{X}_1 and \overline{X}_2 denote the sample means; S_1^2 and S_2^2 denote the sample variances of the two samples, respectively.
 - (a) Write down (without proof) the MLEs, $\hat{\mu}_1, \hat{\sigma}_1^2, \hat{\mu}_2, \hat{\sigma}_2^2$ for
 - (b) Derive the α -level likelihood ratio test for H_0 : $\sigma_1^2 = \sigma_2^2$ against H_1 : $\sigma_1^2 \neq \sigma_2^2$. The resulting test should be expressed in terms of a well-known statistic. (You need not derive the usual MLEs, but you do need to justify the likelihood ratio test.)
- (6) Let X_1, \ldots, X_n be i.i.d. random variables from Binomial (r, θ) ,
 - where $0 < \theta < 1$ and $r \ge 1$ is an integer. (a) Justify that $T = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for θ .
 - (b) Write $q = \Pr[X_1 \leq 1]$ in terms of θ , and define a random indicator U which is an unbiased estimator for q.
 - (c) Use the properties of T and the Rao-Blackwell Theorem to find the UMVU estimator of q.