NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, August 30th, 2017

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all the results that you use in your proofs and verify that these results apply.
- 5. Show all your work and justify the steps in your proofs.
- 6. Please write your full work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

Conventions

- 1. If a measure is not specified, use Lebesgue measure on \mathbb{R}^d . This measure is denoted by m.
- 2. If a σ -algebra on \mathbb{R}^d is not specified, use the Borel σ -algebra.

- 1. (a) Let \mathcal{A} be a σ -algebra on a set X and let $\{B_k\}_{k=1}^{\infty}$ be a sequence of pairwise disjoint sets. For each $n \in \mathbb{N}$ define $A_n := \bigcup_{k=n}^{\infty} B_k$. Prove that $\bigcap_{n=1}^{\infty} A_n = \emptyset$
 - (b) Let $\mathcal A$ be a σ -algebra on a set X and assume that $\mu:\mathcal A\to [0,\infty]$ has the following properties:
 - (i) If $A_1, A_2 \in \mathcal{A}$ with $A_1 \cap A_2 = \emptyset$, then $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.
 - (ii) If $\{A_n\}_{n=1}^{\infty}$ is a sequence in \mathcal{A} such that $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}$, and $\bigcap_{n=1}^{\infty} A_n = \emptyset$, then $\lim_{n \to \infty} \mu(A_n) = 0$

Prove that μ is a positive measure on X.

Hint for (b). To show countable additivity, use (a) and note that $\bigcup_{k=1}^{\infty} B_k$ is the disjoint union of $\bigcup_{k=1}^{n-1} B_k$ and A_n provided $n \ge 2$.

2. (a) Compute the following limit justifying all steps,

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1+x^2)} \, dx.$$

(b) Suppose $g:\mathbb{R}\to[0,\infty)$ is in $L^1(\mathbb{R})$ and $f:\mathbb{R}\to\mathbb{R}$ is continuous and bounded. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} n g(nx) f(x) dx = f(0) \|g\|_{L^1(\mathbb{R})}.$$

3. (a) Suppose that $\{f_n\}_{n\geq 1}, \{g_n\}_{n\geq 1}, f, g$ are functions in $L^1(\mathbb{R}^d)$ and that $f_n(x)\to f(x)$ and $g_n(x)\to g(x)$ for a.e. x in \mathbb{R}^d as $n\to\infty$. Show that if $|f_n|\leq g_n$ for all $n\geq 1$ and $\lim_{n\to\infty}\int g_n\,dx=\int g\,dx$ then $\lim_{n\to\infty}\int f_n\,dx=\int f\,dx$.

Hint for (a). Apply Fatou's lemma to $g_n \pm f_n$.

(b) Suppose $\{f_n\}_{n\geq 1}$, f are functions in $L^1(\mathbb{R}^d)$ and that $f_n(x)\to f(x)$ for a.e. x in \mathbb{R}^d . Prove that $f_n\to f$ in $L^1(\mathbb{R}^d)$ if and only if $\|f_n\|_{L^1(\mathbb{R}^d)}\to \|f\|_{L^1(\mathbb{R}^d)}$.

Hint for (b). Use part (a).

4. (a) Let (X,μ) be a measure space and let $f\in L^1(X,d\mu)$. Prove that for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$\left| \int_A f \, d\mu \right| < \varepsilon,$$

whenever A is a measurable subset of X with $\mu(A) < \delta$.

(b) Consider \mathbb{R} together with the Lebesgue measure m. Suppose that λ is a finite positive measure on \mathbb{R} which is absolutely continuous with respect to m; that is $\lambda \ll m$. Prove that the function $F(x) := \lambda((-\infty, x]), x \in \mathbb{R}$ is *uniformly* continuous.

Hint for (b). Use part (a).

5. Let N be some fixed positive integer and for any $\sigma > 0$ consider the function:

$$\psi_{\sigma}(s) := \begin{cases} (s/\sigma)^N & \text{if} \quad 0 < s \le \sigma, \\ 0 & \text{if} \quad \sigma < s < \infty \end{cases}$$

- (a) Show that for any $a>0, \ \ \psi_{a\sigma}(s)=\psi_{\sigma}(a^{-1}s).$
- (b) Suppose that g is a non-negative function in $L^1([0,\infty),\frac{dx}{x})$. That is, $g\geq 0$ is integrable on $[0,\infty)$ with respect to the measure $\frac{dx}{x}$. Show that,

$$\int_0^\infty \int_s^{2s} \psi_{\sigma}(s) g(t) \frac{dt}{t} \frac{ds}{s} = \int_{\sigma}^{2\sigma} \int_0^\infty \psi_u(s) g(s) \frac{ds}{s} \frac{du}{u}.$$

Hint for (b). Use a change of variables, Fubini-Tonelli (justify), and part (a).

6. Let \mathcal{H} be a real Hilbert space \mathcal{H} with inner product $\langle \, \cdot \, , \, \cdot \, \rangle$ and let S be a subset of \mathcal{H} . We denote by \overline{S} the smallest closed subspace of \mathcal{H} containing S. We define the set

$$S^{\perp}\,:=\,\left\{u\in\mathcal{H}\,:\,\left\langle\,u\,,\,v\,\right\rangle\,=\,0\,\,\mathrm{for\,\,all}\,\,v\in S\,\right\}$$

- (a) Prove that S^{\perp} is a closed subspace of ${\mathcal H}$
- (b) Prove that $S\subset (S^\perp)^\perp$ and that $\overline{S}^\perp\subset S^\perp$
- (c) Use the fact for any <u>closed</u> subspace M of \mathcal{H} , $(M^{\perp})^{\perp}=M$ (which you need <u>not</u> prove) together with (b) to prove that $(S^{\perp})^{\perp}=\overline{S}$.

7. (a) Let f be an integrable function defined on [a,b] and let ϕ be a continuous convex function defined on \mathbb{R} . Prove that

$$\phi\left(\frac{1}{b-a}\int_a^b f(x)\,dx\right)\,\leq\,\frac{1}{b-a}\int_a^b \phi(f(x))\,dx.$$

Hint for (a). Note that if ϕ is convex on \mathbb{R} , then for every $(x_0, \phi(x_0))$ on the graph of ϕ , there exists an $\alpha = \alpha(x_0)$ in \mathbb{R} such that $\phi(x) \geq \alpha(x - x_0) + \phi(x_0)$ for all $x \in \mathbb{R}$. You need **not** prove this. To prove the desired inequality, pick a suitable x_0 .

(b) Show that if $f \in L^q([0,1]), q > 0$, then

$$\int_0^1 \log |f| \, dx \, \le \, \log \|f\|_{L^q([0,1])}.$$

Hint for (b). Use part (a) with $\phi(t) = e^t$ and an appropriate integrable function.

- 8. (a) Let $1 . Show that <math>L^p(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$ with the norm $||f||_{L^p \cap L^q} = ||f||_{L^p} + ||f||_{L^q}$ is a Banach space.
 - (b) Let $1 . Show that <math>L^p(\mathbb{R}^d) \cap L^p(\mathbb{R}^d) \subseteq L^r(\mathbb{R}^d)$ and that the inclusion map is continuous with respect to the norm in the previous part.