NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 31, 2015

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

1. Let m denote Lebesgue measure on [0,1]. For $n\in\mathbb{N}$ define the intervals $A_n=(\frac{1}{n+1},\frac{1}{n}]$. For $\alpha\in\mathbb{R}$ define the function $f:[0,1]\mapsto\mathbb{R}$ by f(0)=0 and

$$f(x) = \sum_{n=1}^{\infty} n^{\alpha} 1_{A_n}(x)$$
 for $0 < x \le 1$.

Find the values of $\alpha \in \mathbb{R}$ for which f is integrable — that is, for which $f \in L^1([0,1],m)$. Then **prove** that f is integrable for these values of $\alpha \in \mathbb{R}$.

2. Let (X,\mathcal{M},μ) be a measure space. Let $\{f_n,n\in\mathbb{N}\}$ be a sequence of real-valued functions in $L^2(X,\mu)$ such that

$$\sup_{n\in\mathbb{N}} \int_X f_n^2 \, d\mu \le C < \infty$$

for some positive constant C. Prove that $\lim_{n\to\infty} f_n(x)/n=0$ for μ -almost every $x\in X$. [Hint. Consider the sequence of functions $g_n=\sum_{k=1}^n f_k^2/k^2$ for $n\in\mathbb{N}$.]

3. (a) Let g be a function that maps [0,1] into \mathbb{R} . Define the concept "g is of bounded variation on [0,1]."

Define the function $f:[0,1]\mapsto \mathbb{R}$ by f(0)=0 and

$$f(x) = x^2 \cos(1/x^2)$$
 for $0 < x \le 1$.

- (b) Prove that f is differentiable at each $x \in (0,1)$ and has a right hand derivative at x = 0.
- (c) Prove that f is not of bounded variation on [0,1] by considering the sequence of partitions indexed by $n\in\mathbb{N}$

$$\mathcal{P}_n = \left\{ 0, \left(\frac{2}{2n\pi} \right)^{1/2}, \left(\frac{2}{(2n-1)\pi} \right)^{1/2}, \dots, \left(\frac{2}{3\pi} \right)^{1/2}, \left(\frac{2}{2\pi} \right)^{1/2}, 1 \right\}.$$

- 4. (a) Give the definition of the outer measure m^* that arises in the construction of Lebesgue measure m on \mathbb{R} . Some authors refer to the outer measure as the exterior measure.
 - (b) Prove that $m^*(A+s)=m^*(A)$ for any subset A of $\mathbb R$ and any $s\in\mathbb R$.
 - (c) Prove that for any nonnegative, Borel-measurable function f mapping $\mathbb R$ into $\mathbb R$ and for any $t\in\mathbb R$

$$\int_{\mathbb{R}} f(x-t) \, dm(x) = \int_{\mathbb{R}} f(x) \, dm(x).$$

[**Hint.** First prove (c) for 1_B , where B is a Borel subset of \mathbb{R} .]

- 5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. Let $f: X \mapsto [0, \infty)$ and $g: Y \mapsto [0, \infty)$ be measurable functions. In this problem the space $X \times Y$ is equipped with the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$.
 - (a) Prove that f and g are both measurable functions on $X \times Y$ and that h(x,y) = f(x)g(y) is also a measurable function on $X \times Y$.
 - (b) Assume that $f \in L^1(X, \mu)$ and $g \in L^1(Y, \nu)$. By applying an appropriate theorem, prove that $h \in L^1(X \times Y, \mu \times \nu)$.

6. Let E be a nonempty closed and convex set in a Hilbert space $\mathcal H$ with norm $\|\cdot\|$. Prove that there exists a unique element $x_0\in E$ which minimizes $\|x\|$ on E; that is, $\|x_0\|=\inf_{x\in E}\|x\|$. [Hint. Use the parallelogram law $\|y+z\|^2+\|y-z\|^2=2\|y\|^2+2\|z\|^2$ for all y and z in $\mathcal H$. Apply the parallelogram law twice, first to an appropriate sequence in order to prove the existence of x_0 and then to prove the uniqueness of x_0 .]

7. (a) Let A be a proper subset of [0, 1] which is measurable. Consider the limit

$$\lim_{n\to\infty} \int_A \cos(2\pi nx)\,dx = 0 = \lim_{n\to\infty} \int_A \sin(2\pi nx)\,dx.$$

Either prove this limit or invoke a theorem that implies this limit. [**Hint.** Use the fact that $1_A \in L^2([0,1],m)$, where m denotes Lebesgue measure on [0,1].]

(b) One can prove that the series $\sum_{n=1}^{\infty}[\sin(2\pi nx)]/\sqrt{n}$ converges for all $x\in[0,1]$ (you do not have to prove this). Could this series be the Fourier series of a function in $L^2([0,1],m)$? Explain your answer.

- 8. (a) Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) < \infty$. Let $\{f_n, n \in \mathbb{N}\}$ and f be measurable functions that map X into \mathbb{R} . Prove that if $f_n \to f$ μ -a.e., then $f_n \stackrel{\mu}{\to} f$ (convergence in measure). [**Hint.** One way to prove this is to use Egoroff's Theorem.]
 - (b) Show that Egoroff's Theorem fails for the measure space $(\mathbb{R},\mathcal{B}_{\mathbb{R}},m)$, where m denotes Lebesgue measure.