DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM — ALGEBRA

SEPTEMBER 2015

Passing Standard: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory and representation theory

- 1. Classify all groups of order 18 and order 20.
- **2.** Let k be a field of characteristic p and G a finite group such that |G| is divisible by p. Set

$$\epsilon = \sum_{g \in G} g \in k[G].$$

Show that the k[G]-submodule $k[G]\epsilon$ of the free module k[G] is not a direct summand.

3.

- (1) Is there a group G with $\mathbf{C}[G]$ isomorphic to $\mathbf{C} \times \mathbf{C} \times M_2(\mathbf{C})$?
- (2) Is there a group G with C[G] isomorphic to $C \times C \times M_3(C)$?

2. Commutative algebra

- **4.** Let A be a ring and $I \subset A$ is a proper ideal. Prove that the radical \sqrt{I} is the intersection of all prime ideals containing I.
 - 5. Prove that every prime ideal in $\mathbf{Z}[x]$ can be generated by at most two elements.
- **6.** Let k be a field and $R = k[x,y]_{(x,y)}/(x^2,xy)$. (That is, R is the quotient of the localization of k[x,y] at the prime ideal (x,y) by the ideal generated by x^2 and xy.) Prove that R is equal to its ring of fractions and that $\dim(R) = 1$.

3. FIELD THEORY AND GALOIS THEORY

- 7. Find the Galois group of the polynomial $x^4 + 2x^2 + 4$ over $k = \mathbb{Q}$.
- 8. How many roots of the polynomial $x^{12} + x^8 + x^4 + 1$ lie in the field \mathbf{F}_{121} of order 121?
- **9.** Determine all possible Galois groups of the splitting field of the polynomial $f_a(x) = x^4 a$ for $a \in \mathbb{Q}$.