ADVANCED CALCULUS/LINEAR ALGEBRA BASIC EXAM

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST SEPTEMBER 2014

Complete 7 of the following 9 problems. Please show your work. The passing standards are:

- Master's level: 60% with three questions essentially complete (including one from each part);
- Ph.D. level: 75% with two questions from each part essentially correct.

Linear Algebra

(1) Let V_1 , V_2 be vector subspaces of \mathbb{R}^n . Prove that

$$\dim(V_1 \cap V_2) \ge \dim V_1 + \dim V_2 - n.$$

(2) Let V be the vector space of all 3×3 matrices with real entries, and consider the linear transformation $T: V \to V$ given by T(X) = AX + XA, where

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Compute the determinant $\det T$.

- (3) Let A be an $n \times n$ complex matrix. Prove that $A^n = 0$ if and only if $I_n tA$ is invertible for all nonzero $t \in \mathbb{C}$.
- (4) Let V be the subspace of \mathbb{R}^4 generated by the vectors

$$v_1 = (1, 2, 0, 1), \quad v_2 = (0, 1, 2, -1), \quad v_3 = (2, 0, 1, -1).$$

Let W be the subspace generated by

$$w_1 = (3, 1, 1, -1), \quad w_2 = (0, 2, 2, 1).$$

Find the dimension and a basis of $V \cap W$ and V + W.

Advanced Calculus

(5) Let S be the surface

$$z = x^2 + y^2, \ z \le 1,$$

oriented so that the normal vector has positive z-coordinate, and let \mathbf{F} be the vector field $(yz, -xz + \sin(z), e^{x^2+y^2})$. Compute the surface integral

$$\int_{S} \mathbf{F} \cdot d\mathbf{A}.$$

(6) Find, with proof, a real number C so that

$$\left| C - \int_0^1 \frac{\sin x}{x} dx \right| < .01.$$

(7) Consider a vector field \mathbb{F} on $\mathbb{R}^3 \setminus \{0\}$ of the form

$$\mathbf{F} = g(\|\mathbf{x}\|)\mathbf{x},$$

where $g:(0,\infty)\to\mathbb{R}$ is a C^1 function. Show that for any closed curve C in $\mathbb{R}^3\setminus\{0\}$, the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{s}$$

vanishes.

- (8) Let $\{f_n\}$ be a sequence of continuously differentiable functions on [a,b], and suppose that $f_n \to f$ pointwise, and $f'_n \to g$ uniformly on [a,b]. Show that
 - (a) $f_n \to f$ uniformly, and
 - (b) f is differentiable, and f' = g.
- (9) (a) Show that, if $\{a_n\}$ is a nonnegative decreasing sequence, the series $\sum_{n=1}^{\infty} a_n$ converges if and only if

$$\sum_{n=1}^{\infty} 2^n a_{2^n} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$$

converges.

(b) Use part (a) to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n(\log n)^p}$$

converge if and only if p > 1.