Department of Mathematics and Statistics University of Massachusetts Amherst

Advanced Exam – Algebra. August 29, 2011.

Passing Standard: It is sufficient to do five problems correctly, including at least one problem from each of the three parts.

1. GROUP THEORY AND REPRESENTATION THEORY

1. Let *G* be a finite Abelian group (written additively) of odd order 2k + 1. Let $\tau : G \to G$ be an automorphism of order 2 defined by formula

$$\tau(x) = -x.$$

Let \hat{G} be a semidirect product of \mathbb{Z}_2 and G defined using τ .

- **a.** Find the number of conjugacy classes in \hat{G} .
- **b.** Find the number of irreducible representations of *G* and their dimensions.

2. Let *G* be a group (not necessarily finite) and let $V = \mathbb{C}[G]$ be a complex vector space with a basis $\{e_g : g \in G\}$ indexed by elements of *G*. Let $U \subset V$ be a vector subspace spanned by vectors $e_{gh} - e_{hg}$ for any $g, h \in G$. Suppose that the quotient vector space V/U is finite-dimensional. Show that *G* has only finitely many conjugacy classes and that their number is equal to dim V/U.

3. Let χ be a character of a complex representation of a finite group *G*. Show that the function

$$g \mapsto 2 + 3\chi(g)$$

is also a character of G.

2. Commutative Algebra

- **4.** Let *R* be a commutative ring with unity and let $\mathfrak{p} \subset R$ be a prime ideal.
 - **a.** Show that the localization R_p is a field if and only if for any element $x \in p$ there exists $y \notin p$ such that xy = 0.
 - **b.** Find an example of a commutative ring *R* and a prime ideal $\mathfrak{p} \neq 0$ such that $R_{\mathfrak{p}}$ is a field.

5. Let *R* be a domain and let $I \subset R$ be an ideal. An element $x \in R$ is called *integral over I* if it satisfies an equation of the form

$$x^{n} + a_{1}x^{n-1} + \ldots + a_{n} = 0$$

with $a_k \in I^k$, the *k*-th power of the ideal *I*, for each k.¹ Show that *x* is integral over *I* if and only if there exists a finitely generated *R*-module *M*, not annihilated by any element of *R*, such that $xM \subset IM$.

¹Be careful: this notion of integrality over an ideal is different from (although related to) the notion of integrality over a ring.

6. Let *R* be a commutative ring with unity that contains only finitely many maximal ideals and such that for each maximal ideal \mathfrak{m} of *R*, the localization $R_{\mathfrak{m}}$ is Noetherian. Prove that

a. The product of localization maps $R \to \bigoplus_{\mathfrak{m}} R_{\mathfrak{m}}$ is an embedding. **b.** *R* is Noetherian.

3. FIELD THEORY AND GALOIS THEORY

7. Find the minimal polynomial of $\sqrt{2} - \sqrt{3}$ over

a. Q;

b. $\mathbb{Q}[\sqrt{3}]$.

8. Let $\mathbb{Z}[i]$ be the ring of Gaussian integers. Let $\mathbb{Q}[i]$ be its quotient field. Let K be a finite Galois extension of $\mathbb{Q}[i]$. Let G be the Galois group of K over $\mathbb{Q}[i]$. Let $R \subset K$ be the integral closure of $\mathbb{Z}[i]$ in K. Show that $\sigma(R) \subset R$ for any $\sigma \in G$ and that $R^G = \mathbb{Z}[i]$.

9. Find the Galois group of the polynomial $X^3 - X - t$ over the field $\mathbb{C}(t)$.