University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry August 2009

Do 5 out of the following 7 problems. Indicate clearly which questions you want graded. *Passing standard:* 70% with three problems essentially complete. Justify all your answers.

Problem 1. Prove the following version of the Frobenius Theorem: Let M be a 2-manifold and X,Y be linearly independent, non-vanishing smooth vector fields defined in a neighborhood of a point $p \in M$ such that $[X,Y] \equiv 0$. Show that there is a smooth chart (x_1,x_2) centered at p such that $X = \frac{\partial}{\partial x_1}$ and $Y = \frac{\partial}{\partial x_2}$.

Problem 2. Use the Mayer-Vietoris sequence and induction to compute the de Rham cohomology groups of $\mathbb{C}P^n$. In this problem you may assume the following knowledge about the de Rham cohomology groups of \mathbb{S}^n :

$$H_{dR}^k(S^n) = \mathbb{R}$$
 if $k = 0, n$, $H_{dR}^k(S^n) = 0$ otherwise,

and the fact that $CP^1 = S^2$.

Problem 3. Let M be a simply-connected, closed smooth 4-manifold, and let β be a closed 3-form on M. Show that there exists a 2-form α on M such that $\beta = d\alpha$.

Problem 4. Let M be a closed, oriented, smooth n-manifold, and $f: M \to M$ be a smooth self-map. A fixed point $x \in M$ of f (i.e., f(x) = x) is called *simple* if the map

$$f_{*,x} - Id: T_xM \to T_xM$$

is an isomorphism.

- (1) Let $\Delta := \{(x,x)|x \in M\} \subset M \times M$ be the diagonal and $\Gamma_f := \{(x,f(x))|x \in M\} \subset M \times M$ be the graph of f. Show that the submanifolds Δ and Γ_f intersect transversely in $M \times M$ if and only if f has only simple fixed points.
- (2) Suppose f has only simple fixed points. Explain how to orient $M \times M$, Δ and Γ_f canonically so that the intersection number

$$\#(\Gamma_f, \Delta) = \sum_{x \text{ is a fixed point of } f} \operatorname{sign}(\det(f_{*,x} - Id)).$$

Problem 5. Let Q be the diagonal matrix with entries 1 and -1, and define $G \subset SL(2,\mathbb{C})$ to be the set of all 2-by-2 complex matrices A with determinant 1 such that $A^*QA = Q$, where A^* is the conjugate transpose of A.

- a) Prove that G is a Lie group, calculate its Lie algebra and compute its dimension.
- b) Determine a maximal abelian subalgebra of its Lie alegbra and a corresponding maximal torus in G.

Problem 6. Let M be a smooth n-manifold and let V(M) be the associated bundle of n-frames.

- a) Show that V(M) is a smooth principal $GL_n(\mathbb{R})$ -bundle over M.
- b) Show that V(M) is a trivial bundle if and only if TM is a trivial bundle.

Problem 7. Let $(M, \langle \cdot, \cdot \rangle)$ be a 2-dimensional Riemannian manifold, and let ∇ be the Levi-Civita connection. For any point $x \in M$, define

$$K(x) \equiv \frac{\langle R(X,Y)Y,X\rangle}{\sqrt{|X|^2|Y|^2-\langle X,Y\rangle^2}},$$

where $X,Y \in T_xM$ is a pair of linearly independent vectors. (Here $R(X,Y)Z \equiv \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is the curvature endomorphism.) Show that

- (1) K(x) depends only on x (i.e., independent of the choice of X, Y).
- (2) If $K \equiv 0$ on M, then $\langle \cdot, \cdot \rangle$ is locally isometric to the Euclidean metric.