Department of Mathematics and Statistics

University of Massachusetts

Basic Exam: Topology

August 27, 2008

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

Let \mathbb{R} denote the real line with the standard topology.

- (1) Let X be a set endowed with two metrics d_1 , d_2 , and let \mathcal{T}_1 , \mathcal{T}_2 be the metric topologies on X attached to these metrics. Suppose that these topologies have the following property: for any $p \in X$ and any open ball B_1 in \mathcal{T}_1 with center p, there is an open ball B_2 in \mathcal{T}_2 with center p such that $B_2 \subset B_1$. Show that \mathcal{T}_1 is coarser than \mathcal{T}_2 .
- (2) Let S^1 be the unit circle in \mathbb{R}^2 . Equip $S^1 \times S^1$ with the product topology. Let $f: S^1 \times S^1 \to (0,1)$ be continuous.
 - (a) Prove that f cannot be surjective.
 - (b) Prove that there exists an $x \times y \in S^1 \times S^1$ such that

$$f(x \times y) = f((-x) \times y).$$

(3) Let X be the union of the x- and y-axes in \mathbb{R}^2 ,

$$X = (\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R}) \subset \mathbb{R} \times \mathbb{R}$$

Give $X \subset \mathbb{R}^2$ the subspace topology. Define the map $g: \mathbb{R}^2 \to X$ by the equations

$$g(x \times y) = x \times 0$$
, if $x \neq 0$
 $g(0 \times y) = 0 \times y$, otherwise

- (a) Prove that g is not a quotient map.
- (b) Show that in the quotient topology induced by g, the space X is not Hausdorff.
- (4) Prove or disprove the following:
 - (a) If X and Y are path-connected, then $X \times Y$ is path-connected.
 - (b) If $A \subset X$ is path-connected, then its closure \overline{A} is path-connected.
 - (c) If X is path-connected and $f: X \to Y$ is continuous, then f(X) is path-connected.

- (d) If $f: X \to Y$ is continuous and f(X) is path-connected, then X is path-connected.
- (5) Consider the sequence of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ given by $f_n(x) = e^{-nx^2}$.
 - (a) Prove that $\{f_n\}$ converges in the point-open topology (pointwise convergence) but not in the compact-open topology (compact convergence), nor in the uniform topology.
 - (b) Construct a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that the sequence $g_n = f_n \circ g$ converges in the compact-open topology but not the uniform topology. Represent the function either algebraically, or with a clear picture. Justify your answer.
- (6) (a) Let $f: X \to Y$ be a closed continuous surjection. Prove that if Y is compact and $f^{-1}(y)$ is compact for every $y \in Y$, then X is compact.
 - (b) Prove by example that the above statement is false if the surjective hypothesis is dropped.
- (7) Prove that a compact connected Hausdorff space either has one point or cannot be countable.