
Your Name :

Department of Mathematics and Statistics

University of Massachusetts Amherst

Advanced Qualifying Exam– Differential Equations.

Monday August 25th, 2008

10am to 1pm – LGRT 1234

This exam consists of seven (7) problems all carrying equal weight. You must do five (5)
of them. Passing level: 75% with at least three (3) substantially complete solutions. Please
justify all your steps properly by indicating (or stating) the result you are using. Please write
each problem clearly and neatly in a separate page.

(1) Consider the initial value problem
utt − c2 uxx = 0 x ∈ R, t > 0
u(x, 0) = p(x)
ut(x, 0) = q(x)

where p(x), q(x) are known given smooth functions and c > 0.

(a) By direct calculation show that the D’Alembert formula gives the solution to the problem
above; i.e verify all identities above are satisfied.

(b) Denote by χ the function of one variable

χ(x) =
{

1 if |x| ≤ 1
0 otherwise

Suppose that p(x) = χ(x) and q(x) = 0. Show then that for each fixed t > 0, the solution
u(x, t) obtained explicitly from the D’Alembert formula vanishes on the two half intervals (for
t fixed):

x ∈ (−∞,−(1 + ct)) x ∈ (1 + ct,∞)
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(2) Let f(x) be the vector field on x ∈ R2

f(x) =
( Hx2(x)
−Hx1(x)

)
x = (x1, x2)

where H(x) is a given smooth function of x; and let x(t, ξ) be the solution of

dx

dt
= f(x), x(0, ξ) = ξ

for each initial condition in ξ ∈ R2.

Let B0 = {ξ : ξ2
1 + ξ2

2 ≤ 1} and define B(t) = {x(t, ξ) : ξ ∈ B0}. Show that∫ ∫
B(t)

dx = π for all t,

i.e., the area of B(t) is constant in time. (Hint: Consider the (linearized) system of ODE’s
satisfied by the Jacobian xξ(t, ξ) of the solution of the original initial value problem with respect
to the initial conditions.)

(3) (a) Let Ω ⊂ Rn be a bounded domain with smooth boundary. (Recall a domain is a
connected open subset of Rn)

Assume that
u ∈ C2(Ω× (0,∞)) ∩ C1(Ω× [0,∞))

is a solution of {
utt = c2∆u

u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,

where c is a constant.
Show that the energy

E(t) :=
1
2

∫
Ω

(
u2

t + c2 |∇u|2
)

dx

is conserved; i.e. E(t) = E(0) for all t ≥ 0.

(b) Let Ω ⊂ Rn be a bounded domain with smooth boundary. Use part (a) to show unique-
ness of the solution for the non-homogeneous boundary/initial value problem wave

utt −∆u = f(x, t) x ∈ Ω, t > 0
u(x, t) = g(x, t) on ∂Ω, t ≥ 0
u(x, 0) = h(x), ut(x, 0) = k(x) x ∈ Ω

where f, g, h, k are given smooth functions and any solution u is assumed to belong to the space
C2(Ω× (0,∞)) ∩ C1(Ω× [0,∞))
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(4) Consider the 1-parameter family of equations

(∗)
{

x′ = y3 − y − x

y′ = x−A

(a) When A = 0 give a complete and rigorous analysis of the global behavior of all solutions
to (∗), paying particular attention the behaviors of solutions near rest points, and the presence
of any periodic, homoclinic, or heteroclinic orbits, if any such orbits exist. A phase plane sketch
of the various behaviors that occur must be justified appropriate analytical calculations and
arguments. Useful techniques include linearization, invariant regions, Liapunov functions, and
the stable/unstable manifolds.

(b) How would you expect the phase planes of (∗) to change as A is increased from A = 0
to A = 1 ? Your answer may be left in the form of a conjecture obtained from information
you are able to calculate for particular values of A; a complete and rigorous justification is not
required.

(5) Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with smooth boundary. Let G(x, y) denote the
Green’s function for this domain. We know that for fixed x ∈ Ω

G(x, y) := K(y − x)− ωx(y)

where ωx(y) satisfies {
∆y ωx = 0 in Ω,

ωx(y) = K(y − x) for y ∈ ∂Ω

and
K(x) :=

1
n(n− 2)α(n)

1
|x|n−2

, α(n) = volume of unit ball in Rn

for x ∈ Rn, x 6= 0 is the fundamental solution of the Laplace’s equation.

Thus y → G(x, y) is harmonic for y ∈ Ω, y 6= x and G(x, y) = 0 for y ∈ ∂Ω. Moreover,
G(x, y) = G(y, x) (you do not need to prove this).

Use the maximum/minimum principle to show that G(x, y) > 0 for all x, y ∈ Ω with x 6= y.
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(6) (a) Determine the variation of parameters solution to

x′(t) =
( 0 −1
1 0

)
x(t) +

( f1(t)
f2(t)

)
x(0) =

( a
b

)
where f1(t) and f2(t) are continuous and a, b are constants.

(b) Determine the first two coefficients X0(t) and X1(t) in the Taylor expansion
∞∑

n=0

εn

n!
Xn(t)

of the exact solution x(t, ε) of

x′ =
( 0 −1
1 ε sin t cos t

)
x x(0) =

( a
b

)
(†)

(c) Viewing (†) as a linear periodic system with a 2π-periodic coefficient matrix, use the
first order approximation x1(t, ε) = X0(t) + εX1(t) to the exact solution x(t, ε) of (†) to obtain
an approximation to the system’s Floquet multipliers, and use this calculation to formulate
a conjecture about the asymptotic stability of the exact solution x(t, ε) for sufficiently small
ε 6= 0. (Hints: Use x1(t, ε) to approximate each of the columns of the fundamental matrix

solution Φ(t, ε) with Φ(0, ε) =
( 1 0
0 1

)
for small ε; also,

∫ 2π

0
sin2 t cos2 t dt = π/4.)

(7) Let Ω ⊂ Rn be a bounded domain with smooth boundary. Define

λ1 = λ1(Ω) := inf
u∈C∞c (Ω),u 6=0

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

where C∞
c (Ω) is the set of C∞ functions whose support is a compact subset in Ω.

(a) Prove the Poincaré inequality: i.e for u ∈ C∞
c (Ω) and 1 ≤ p < ∞

‖u‖Lp ≤ C ‖∇u‖Lp

where C > 0 is a constant depending possibly on Ω and p but independent of u. Deduce from
it that λ1 > 0. (Hints. Assume Ω ⊂ [−M,M ]n; write u(x) = 1

2{
∫ x

−M
∂1u(y, x2, . . . xn) dy −∫ M

x
∂1u(y, x2, . . . xn) dy} (why?)).

(b) Prove that for all f ∈ L2(Ω) and for all constants γ > −λ1, there exists a weak solution
u ∈ H1

0 (Ω) of { −∆u + γ u = f in Ω
u = 0 on ∂Ω.
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