DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM — ALGEBRA

AUGUST 30, 2004

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the four parts.

Part I.

1. Let G be a finite group of order p^n , where p is a prime. Show that its center Z(G) is non-trivial, and that G is solvable.

2. (a) Determine the number of *automorphisms* of the symmetric group S_3 . Show your work.

(b) Determine the number of homomorphisms from S_3 to S_3 . Show your work.

Part II. All rings are commutative with 1, and all ring homomorphisms take 1 to 1.

1. Let A be a ring, and let $I, J \subset A$ be coprime ideals, i.e. I + J = A. For any positive integers m, n, show that I^m and J^n are also coprime ideals.

2. Determine all subrings of $\mathbf{Z} \times \mathbf{Z}$.

Part III. All rings are commutative and with 1.

1. (a) Prove that there is no 3×3 matrix A over **Q** with $A^8 = I$ but $A^4 \neq I$.

(b) Write down a 4×4 matrix B over \mathbf{Q} with $B^8 = I$ but $B^4 \neq I$. (NOTE: you must show that B satisfies these conditions)

2. Let $f, g \in \mathbf{C}[x]$ be non-constant polynomials. Prove or disprove:

(a) $\mathbf{C}[x]/f \otimes_{\mathbf{C}[x]} \mathbf{C}[x]/g \simeq \mathbf{C}[x]/\operatorname{gcd}(f,g)$ as $\mathbf{C}[x]$ -modules.

(b) $\mathbf{C}[x]/f \otimes_{\mathbf{C}} \mathbf{C}[x]/g \simeq \mathbf{C}[x]/\operatorname{gcd}(f,g)$ as **C**-modules.

Part IV.

1. Let K/k be a Galois extension of degree 45.

(a) does there always exist a field F with $k \subset F \subset K$ such that [F:k] = 5?

(b) does there always exist F as in (a) and with F/k Galois?

2. Denote by \mathbf{F}_2 the finite field with two elements.

(a) Show that $g(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible and separable over \mathbf{F}_2 .

(b) Denote by K a splitting field of g over \mathbf{F}_2 , and let $\alpha \in K$ be a root of g. Show that $K = \mathbf{F}_2(\alpha)$.

(c) Determine $\operatorname{Gal}(K/\mathbf{F}_2)$.