DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM - ALGEBRA

AUGUST 30, 2004
Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the four parts.

Part I.

1. Let G be a finite group of order p^{n}, where p is a prime. Show that its center $Z(G)$ is non-trivial, and that G is solvable.
2. (a) Determine the number of automorphisms of the symmetric group S_{3}. Show your work.
(b) Determine the number of homomorphisms from S_{3} to S_{3}. Show your work.

Part II. All rings are commutative with 1 , and all ring homomorphisms take 1 to 1 .

1. Let A be a ring, and let $I, J \subset A$ be coprime ideals, i.e. $I+J=A$. For any positive integers m, n, show that I^{m} and J^{n} are also coprime ideals.
2. Determine all subrings of $\mathbf{Z} \times \mathbf{Z}$.

Part III. All rings are commutative and with 1 .

1. (a) Prove that there is no 3×3 matrix A over \mathbf{Q} with $A^{8}=I$ but $A^{4} \neq I$.
(b) Write down a 4×4 matrix B over Q with $B^{8}=I$ but $B^{4} \neq I$. (NOTE: you must show that B satisfies these conditions)
2. Let $f, g \in \mathbf{C}[x]$ be non-constant polynomials. Prove or disprove:
(a) $\mathbf{C}[x] / f \otimes_{\mathbf{C}[x]} \mathbf{C}[x] / g \simeq \mathbf{C}[x] / \operatorname{gcd}(f, g)$ as $\mathbf{C}[x]$-modules.
(b) $\mathbf{C}[x] / f \otimes_{\mathbf{C}} \mathbf{C}[x] / g \simeq \mathbf{C}[x] / \operatorname{gcd}(f, g)$ as \mathbf{C}-modules.

Part IV.

1. Let K / k be a Galois extension of degree 45 .
(a) does there always exist a field F with $k \subset F \subset K$ such that $[F: k]=5$?
(b) does there always exist F as in (a) and with F / k Galois?
2. Denote by \mathbf{F}_{2} the finite field with two elements.
(a) Show that $g(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible and separable over \mathbf{F}_{2}.
(b) Denote by K a splitting field of g over \mathbf{F}_{2}, and let $\alpha \in K$ be a root of g. Show that $K=\mathbf{F}_{2}(\alpha)$.
(c) Determine $\operatorname{Gal}\left(K / \mathbf{F}_{2}\right)$.
