DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM - ALGEBRA

AUGUST 27, 2001

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the four parts.

All rings are commutative with 1 , and every ring homomorphism takes 1 to 1 .

Part I.

1. Show that there is no simple group of order 36. (Hint: You may quote the Sylow theorems, but otherwise provide all details.)
2. How many homomorphisms are there from the group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ to the dihedral group of order 8 ? (Hint: you can use the fact that the dihedral group of order 8 has exactly two subgroups isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.)

Part II.

1. (a) Prove that a finite integral domain must be a field.
(b) Determine all prime ideals and maximal ideals of the $\operatorname{ring} \mathbf{Z} / n \mathbf{Z}$, for $n>1$.
2. Determine all ring automorphisms of the polynomial ring $\mathbf{Z}[x]$.

Part III.

1. Determine an integer m such that $(\mathbf{Z} / 10 \mathbf{Z} \oplus \mathbf{Z} / 21 \mathbf{Z}) \otimes \mathbf{Z}(\mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 9 \mathbf{Z}) \simeq \mathbf{Z} / m \mathbf{Z}$ as Z-modules.
2. Let M be the $n \times n$ matrix over a field K of characteristic zero such that every entry of M is 1 .
(a) Find the characteristic polynomial of M.
(b) Determine the Jordan canonical form of M over K.

Part IV.

1. Let F_{1}, F_{2} be two intermediate subfields of a Galois extension K / k. Let $H_{1}=$ $\operatorname{Gal}\left(K / F_{1}\right)$ and $H_{2}=\operatorname{Gal}\left(K / F_{2}\right)$. Show that H_{1} and H_{2} are conjugate (as subgroups) in $\operatorname{Gal}(K / k)$ if and only if there exists an automorphism $\tau \in \operatorname{Gal}(K / k)$ such that $\tau\left(F_{1}\right)=F_{2}$.
2. (a) Compute the minimal polynomial of $\sqrt{2}+\sqrt{-2}$ over \mathbf{Q}.
(b) Determine the Galois group of the Galois closure of the extension $\mathbf{Q}(\sqrt{2}+\sqrt{-2}) / \mathbf{Q}$. Note: Although it is NOT essential for this problem, you may find it convenient to use the fact that the resolvent cubic of $x^{4}+b x^{3}+c x^{2}+d x+e$ is $x^{3}-c x^{2}+(b d-4 e) x-b^{2} e+4 c e-d^{2}$.
