BASIC EXAM - LINEAR ALGEBRA/ADVANCED CALCULUS
 UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS JANUARY 2011

Do 7 of the following 10 problems.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Let V be the vector subspace of \mathbf{R}^{4} generated by the vectors

$$
v_{1}=(1,2,-1,-2), \quad v_{2}=(3,1,1,1), v_{3}=(-1,0,1,-1),
$$

and W the subspace generated by

$$
w_{1}=(2,5,-6,-5), w_{2}=(-1,2,-7,3) .
$$

Find the dimension and a basis for each of $V \cap W$ and $V+W$.
2. It is a fact that $M_{n}(\mathbf{R})$, the set of $n \times n$ matrices with real coefficients, is a real vector space. Given any $A \in M_{n}(\mathbf{R})$, show that the matrices

$$
I_{n}, A, A^{2}, A^{3}, \ldots,
$$

spans a subspace of $M_{n}(\mathbf{R})$ of dimension $\leq n$.
3. Given complex numbers a, b, c, d, find sufficient and necessary conditions for the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right)
$$

to be diagonalizable.
4. Let A be an $n \times n$ real matrix. Prove that if A is orthogonal, symmetric and positive definite, then A is the identity.
5. Determine the signature of the bilinear form on \mathbf{R}^{3} with matrix

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Part II. Advanced Calculus

1. Give an example of a sequence of discontinuous functions on $[0,1]$ converging uniformly to a continuous function. Justify your reasoning.

2(a) Show that the function

$$
f(x)= \begin{cases}(1+x)^{1 / x} & \text { if } x \neq 0 \\ e & \text { if } x=0\end{cases}
$$

is infinitely differentiable on the entire real line.
(b) Determine the first three non-zero terms of the Taylor series of f expanded at the origin.
3. Determine all points at which the surfaces $x^{2}+y^{2}+z^{2}=3$ and $x^{3}+y^{3}+z^{3}=3$ share the same tangent line.

Note: Any such point must of course lie on both surfaces.
4. Let $\sum_{n=1}^{\infty} a_{n}$ be a series of real numbers. If it converges absolutely to a finite number S, show that any rearrangement of this series also converges to S.
5. Evaluate

$$
\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve given parametrically by

$$
\mathbf{r}(t)=\langle\sin t, \cos t, \sin 2 t\rangle, \quad 0 \leq t \leq 2 \pi .
$$

Hint: C lies on the surface $z=2 x y$.

