BASIC EXAM - LINEAR ALGEBRA/ADVANCED CALCULUS
 UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS AUGUST 2007

Do 7 of the following 9 problems.
Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. leve, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Let A, B be real, $n \times n$ matrices such that $A^{2}=A$ and $B^{2}=B$. Suppose A and B have the same rank. Show that A and B are similiar.
2. Denote by $M_{2 \times 2}$ the real vector space of all 2×2 real matrices. Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and denote by $\phi: M_{2 \times 2} \rightarrow M_{2 \times 2}$ the linear transformation defined by $\phi(M)=A M-M A$.
(a) Is ϕ diagonalizable?
(b) Is ϕ invertible?

Justify your answer!
3. Let A be a real, $n \times n$ orthogonal matrix (i.e. $A^{t} A=I_{n}$, the $n \times n$ identity) and with $\operatorname{det} A=1$.
(a) Show that every eigenvalue of A has absolute value 1 .
(b) If n is odd, show that 1 is an eigenvalue of A.
4. Let V, W be finite dimensional real vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Determine

$$
\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{image} T)
$$

Justify your answer!

Part II. Advanced Calculus

1. Let f_{1}, f_{2}, \ldots be continuous functions on $[0,1]$ satisfying $f_{1}(x) \geq f_{2}(x) \geq \cdots$ and $\lim _{n \rightarrow \infty} f_{n}(x)=1$ for all x. Prove or give a counterexample: the sequence of functions $\left\{f_{n}\right\}_{n}$ uniformly converges to the constant function 1 on $[0,1]$.
2. Let $g:[1, \infty) \rightarrow \mathbf{R}$ be a function which is uniformly continuous. If $g(x) \geq 0$ for all x and if $\int_{1}^{\infty} g(t) d t$ exists and is finite, show that $\lim _{x \rightarrow \infty} g(x)=0$.
3. Evaluate

$$
\alpha:=\int_{0}^{1 / 2} \frac{\sin (t)}{t} d t
$$

to two decimal places, i.e. find a real number β such that $|\alpha-\beta|<0.005$. Show your work!
4. Determine all values (a, b) for which the function

$$
f_{a, b}(x, y):=a y^{2}+b x
$$

has exactly four critical points along the ellipse $3 x^{2}+2 y^{2}=1$.
5. Denote by \vec{F} the following vector field in \mathbf{R}^{3}

$$
\left(x^{2}+y-4\right) \vec{\imath}+(3 x y) \vec{\jmath}+\left(2 x z+z^{2}\right) \vec{k} .
$$

(a) Compute $\nabla \times \vec{F}$ (in other words, curl \vec{F}).
(b) Compute the integral of $\nabla \times \vec{F}$ along the surface $x^{2}+y^{2}+z^{2}=25$ with $z \geq 3$, oriented so that the normal vectors point towards the origin.
6. Denote a sequence $\left\{a_{n}\right\}$ recursively as follow:

$$
a_{1}=3, \quad a_{n+1}=\sqrt{3+a_{n}}(n \geq 1)
$$

Show that this sequences converges to a finite number and determine this number. Show your work!

