Advanced Calculus/Linear Algebra Basic Exam August 2006

Do 7 of the following 9 problems. Indicate clearly on your answer booklet which problems should be graded.

Passing standard: For Master's level, 60% with three questions essentially correct (including at least one from each part). For Ph.D. level, 75% with two questions from each part essentially complete.

Part I: Linear algebra

1. Determine the Jordan canonical form of the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

2. Let V be a five-dimensional real vector space and let $T: V \rightarrow V$ be a linear transformation with characteristic polynomial $(x-3)^{2}(x+2)^{3}$.
(a) Compute the determinant of T.
(b) Do there exist linearly independent vectors $v_{1}, v_{2} \in V$ such that $T\left(v_{1}\right), T\left(v_{2}\right)$ are also linearly independent?
(c) Show that V possesses T-invariant subspaces of each dimension 1, 2, 3 and 4.
3. Let T and U be commuting linear transformations (that is, $T U=U T$) on a finite dimensional complex vector space V. Show that T and U have a simultaneous eigenvector: that is, show that there is a non-zero $v \in V$ which is an eigenvector for each of T and U.
4. Let $T: V \rightarrow V$ be a linear transformation of a finite-dimensional real vector space V. Suppose that T has no real eigenvalues. Show that every T-invariant subspace W of V has even dimension.

Part II: Advanced calculus

1. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\left\langle x^{3}, x^{2} y, x^{2} z\right\rangle$ and S is the (closed) surface of the cylinder bounded by $x^{2}+y^{2}=1, z=0$ and $z=1$, oriented outwards.
2. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series and let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a bounded, positive, increasing sequence. Prove that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
3. Let f be a function whose second derivative $f^{\prime \prime}(x)$ exists and is continuous on an open interval (a, b). Prove that

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}
$$

for all $x \in(a, b)$.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a convex (and thus continuous) function: that is,

$$
f\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right) \leq t_{1} f\left(x_{1}\right)+\cdots+t_{n} f\left(x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathbf{R}$ and all $t_{1}, \ldots, t_{n} \geq 0$ such that $t_{1}+\cdots+t_{n}=1$. Let $g(x)$ be a continuous function on $[0,1]$. Prove that

$$
f\left(\int_{0}^{1} g(x) d x\right) \leq \int_{0}^{1} f(g(x)) d x .
$$

5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y \tan ^{-1} z, x \tan ^{-1} z, \frac{x y}{1+z^{2}}\right\rangle
$$

and the line C connecting $(0,0,0)$ to $(1,1,1)$.

