DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 MASTER'S OPTION EXAM-APPLIED MATHEMATICS

August 2011

Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially correct.

1. Consider the 2×2 linear system

$$
\frac{d x}{d t}=A x, \quad \text { with } \quad A=\left[\begin{array}{cc}
-1 & 3 \\
-3 & -1
\end{array}\right] .
$$

(a) Find the general solution of this system.
(b) Calculate the exponential matrix solution $e^{t A}$.
2. Consider a mechanical system with configuration variable $q=q(t) \in R^{1}$ governed by the differential equation

$$
\frac{d^{2} q}{d t^{2}}+2 \beta \frac{d q}{d t}+q-q^{2}=0, \quad \text { for a constant } \quad 0<\beta<1
$$

(a) Find the equilibrium points, and classify them by type and stability.
(b) Draw the phase portrait in the ($q, d q / d t$) plane, and describe the qualitative behavior of this system.
3. Consider the wedge-shaped region in the plane R^{2} given in polar coordinates by $\Omega=\{(r, \theta): 0<r<a, 0<\theta<\beta\}$, for given radial extent a and opening angle β. Solve Laplace's equation inside Ω subject to the boundary conditions:

$$
u=0 \quad \text { for } \theta=0 \text { and } \theta=\beta, \quad \frac{\partial u}{\partial r}=h(\theta) \quad \text { for } r=a .
$$

The boundary data $h(\theta)$ is any continuous function with $h(0)=0=h(\beta)$.
4. Consider the inhomogeneous heat equation with unit diffusivity on an interval of length π having insulated boundary conditions at each end. That is, consider the following initial-boundary value problem for the temperature $u=u(x, t)$:

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =f(x, t) \quad \text { in } \quad 0<x<\pi, t>0, \\
u(x, 0) & =0, \quad \frac{\partial u}{\partial x}(0, t)=0=\frac{\partial u}{\partial x}(\pi, t) .
\end{aligned}
$$

The source term f is an arbitrary smooth function compatible with the initial and boundary conditions.
(a) Solve this problem by the Fourier series method.
(b) Express the solution in the integral form

$$
u(x, t)=\int_{0}^{t} \int_{0}^{\pi} G\left(t-t^{\prime}, x, x^{\prime}\right) f\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}
$$

and give a formula for G.
5. Consider the differential equation:

$$
\frac{d x}{d t}=x\left[1-(x-\alpha)^{2}\right] \quad \text { for } \quad \alpha>0
$$

(a) Determine the equilibrium points for $\alpha<1$ and $\alpha>1$, and describe the stability of each.
(b) What kind of bifurcation occurs at $\alpha=1$?
6. (a) Find the steady state solution $u(x, t)=v(x) \sin \omega t$ to the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad \text { for } \quad 0<x<L
$$

with $u(0, t)=0$ and $u(L, t)=A \sin \omega t$. Assume that $\omega / c \neq m \pi / L$ for any $m=1,2, \ldots$.
(b) What happens when $\omega / c=m \pi / L$ for some $m=1,2, \ldots$?

