DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MASTER'S OPTION EXAM—APPLIED MATHEMATICS August 2011

Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially correct.

1. Consider the 2×2 linear system

$$\frac{dx}{dt} = Ax$$
, with $A = \begin{bmatrix} -1 & 3 \\ -3 & -1 \end{bmatrix}$.

- (a) Find the general solution of this system.
- (b) Calculate the exponential matrix solution e^{tA} .

2. Consider a mechanical system with configuration variable $q = q(t) \in \mathbb{R}^1$ governed by the differential equation

$$\frac{d^2q}{dt^2} + 2\beta \frac{dq}{dt} + q - q^2 \ = \ 0 \,, \qquad \text{for a constant} \quad 0 < \beta < 1 \,. \label{eq:constant}$$

- (a) Find the equilibrium points, and classify them by type and stability.
- (b) Draw the phase portrait in the (q, dq/dt) plane, and describe the qualitative behavior of this system.
- **3.** Consider the wedge-shaped region in the plane R^2 given in polar coordinates by $\Omega = \{ (r, \theta) : 0 < r < a, 0 < \theta < \beta \}$, for given radial extent a and opening angle β . Solve Laplace's equation inside Ω subject to the boundary conditions:

$$u = 0$$
 for $\theta = 0$ and $\theta = \beta$, $\frac{\partial u}{\partial r} = h(\theta)$ for $r = a$.

The boundary data $h(\theta)$ is any continuous function with $h(0) = 0 = h(\beta)$.

4. Consider the inhomogeneous heat equation with unit diffusivity on an interval of length π having insulated boundary conditions at each end. That is, consider the following initial-boundary value problem for the temperature u = u(x, t):

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = f(x,t) \quad \text{in } 0 < x < \pi, \ t > 0,$$

$$u(x,0) = 0, \qquad \frac{\partial u}{\partial x}(0,t) = 0 = \frac{\partial u}{\partial x}(\pi,t).$$

The source term f is an arbitrary smooth function compatible with the initial and boundary conditions.

- (a) Solve this problem by the Fourier series method.
- (b) Express the solution in the integral form

$$u(x,t) = \int_0^t \int_0^{\pi} G(t-t',x,x') f(x',t') dx' dt',$$

and give a formula for G.

5. Consider the differential equation:

$$\frac{dx}{dt} = x \left[1 - (x - \alpha)^2 \right]$$
 for $\alpha > 0$.

- (a) Determine the equilibrium points for $\alpha < 1$ and $\alpha > 1$, and describe the stability of each.
 - (b) What kind of bifurcation occurs at $\alpha = 1$?
- **6.** (a) Find the steady state solution $u(x,t) = v(x) \sin \omega t$ to the wave equation

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \text{for} \quad 0 < x < L,$$

with u(0,t) = 0 and $u(L,t) = A \sin \omega t$. Assume that $\omega/c \neq m\pi/L$ for any $m = 1, 2, \ldots$

(b) What happens when $\omega/c = m\pi/L$ for some $m = 1, 2, \dots$?